高维命题微积分

Pub Date : 2024-08-28 DOI:10.1093/jigpal/jzae100
A Bucciarelli, P-L Curien, A Ledda, F Paoli, A Salibra
{"title":"高维命题微积分","authors":"A Bucciarelli, P-L Curien, A Ledda, F Paoli, A Salibra","doi":"10.1093/jigpal/jzae100","DOIUrl":null,"url":null,"abstract":"In recent research, some of the present authors introduced the concept of an $n$-dimensional Boolean algebra and its corresponding propositional logic $n\\textrm{CL}$, generalizing the Boolean propositional calculus to $n\\geq 2$ perfectly symmetric truth values. This paper presents a sound and complete sequent calculus for $n\\textrm{CL}$, named $n\\textrm{LK}$. We provide two proofs of completeness: one syntactic and one semantic. The former implies as a corollary that $n\\textrm{LK}$ enjoys the cut admissibility property. The latter relies on the generalization to the $n$-ary case of the classical proof based on the Lindenbaum algebra of formulas and Boolean ultrafilters.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The higher dimensional propositional calculus\",\"authors\":\"A Bucciarelli, P-L Curien, A Ledda, F Paoli, A Salibra\",\"doi\":\"10.1093/jigpal/jzae100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent research, some of the present authors introduced the concept of an $n$-dimensional Boolean algebra and its corresponding propositional logic $n\\\\textrm{CL}$, generalizing the Boolean propositional calculus to $n\\\\geq 2$ perfectly symmetric truth values. This paper presents a sound and complete sequent calculus for $n\\\\textrm{CL}$, named $n\\\\textrm{LK}$. We provide two proofs of completeness: one syntactic and one semantic. The former implies as a corollary that $n\\\\textrm{LK}$ enjoys the cut admissibility property. The latter relies on the generalization to the $n$-ary case of the classical proof based on the Lindenbaum algebra of formulas and Boolean ultrafilters.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最近的研究中,一些作者引入了$n$维布尔代数及其相应的命题逻辑$n\textrm{CL}$的概念,将布尔命题微积分推广到了$n\geq 2$完全对称真值。本文为 $n\textrm{CL}$ 提出了一个完善而完整的序列微积分,命名为 $n\textrm{LK}$。我们提供了两个完备性证明:一个是语法证明,另一个是语义证明。前者的推论是 $n\textrm{LK}$ 具有切分可接受性。后者依赖于基于林登鲍姆公式代数和布尔超滤波器的经典证明在 $n$-ary 情况下的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The higher dimensional propositional calculus
In recent research, some of the present authors introduced the concept of an $n$-dimensional Boolean algebra and its corresponding propositional logic $n\textrm{CL}$, generalizing the Boolean propositional calculus to $n\geq 2$ perfectly symmetric truth values. This paper presents a sound and complete sequent calculus for $n\textrm{CL}$, named $n\textrm{LK}$. We provide two proofs of completeness: one syntactic and one semantic. The former implies as a corollary that $n\textrm{LK}$ enjoys the cut admissibility property. The latter relies on the generalization to the $n$-ary case of the classical proof based on the Lindenbaum algebra of formulas and Boolean ultrafilters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信