高维命题微积分

IF 0.6 4区 数学 Q2 LOGIC
A Bucciarelli, P-L Curien, A Ledda, F Paoli, A Salibra
{"title":"高维命题微积分","authors":"A Bucciarelli, P-L Curien, A Ledda, F Paoli, A Salibra","doi":"10.1093/jigpal/jzae100","DOIUrl":null,"url":null,"abstract":"In recent research, some of the present authors introduced the concept of an $n$-dimensional Boolean algebra and its corresponding propositional logic $n\\textrm{CL}$, generalizing the Boolean propositional calculus to $n\\geq 2$ perfectly symmetric truth values. This paper presents a sound and complete sequent calculus for $n\\textrm{CL}$, named $n\\textrm{LK}$. We provide two proofs of completeness: one syntactic and one semantic. The former implies as a corollary that $n\\textrm{LK}$ enjoys the cut admissibility property. The latter relies on the generalization to the $n$-ary case of the classical proof based on the Lindenbaum algebra of formulas and Boolean ultrafilters.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"8 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The higher dimensional propositional calculus\",\"authors\":\"A Bucciarelli, P-L Curien, A Ledda, F Paoli, A Salibra\",\"doi\":\"10.1093/jigpal/jzae100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent research, some of the present authors introduced the concept of an $n$-dimensional Boolean algebra and its corresponding propositional logic $n\\\\textrm{CL}$, generalizing the Boolean propositional calculus to $n\\\\geq 2$ perfectly symmetric truth values. This paper presents a sound and complete sequent calculus for $n\\\\textrm{CL}$, named $n\\\\textrm{LK}$. We provide two proofs of completeness: one syntactic and one semantic. The former implies as a corollary that $n\\\\textrm{LK}$ enjoys the cut admissibility property. The latter relies on the generalization to the $n$-ary case of the classical proof based on the Lindenbaum algebra of formulas and Boolean ultrafilters.\",\"PeriodicalId\":51114,\"journal\":{\"name\":\"Logic Journal of the IGPL\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Journal of the IGPL\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae100\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae100","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在最近的研究中,一些作者引入了$n$维布尔代数及其相应的命题逻辑$n\textrm{CL}$的概念,将布尔命题微积分推广到了$n\geq 2$完全对称真值。本文为 $n\textrm{CL}$ 提出了一个完善而完整的序列微积分,命名为 $n\textrm{LK}$。我们提供了两个完备性证明:一个是语法证明,另一个是语义证明。前者的推论是 $n\textrm{LK}$ 具有切分可接受性。后者依赖于基于林登鲍姆公式代数和布尔超滤波器的经典证明在 $n$-ary 情况下的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The higher dimensional propositional calculus
In recent research, some of the present authors introduced the concept of an $n$-dimensional Boolean algebra and its corresponding propositional logic $n\textrm{CL}$, generalizing the Boolean propositional calculus to $n\geq 2$ perfectly symmetric truth values. This paper presents a sound and complete sequent calculus for $n\textrm{CL}$, named $n\textrm{LK}$. We provide two proofs of completeness: one syntactic and one semantic. The former implies as a corollary that $n\textrm{LK}$ enjoys the cut admissibility property. The latter relies on the generalization to the $n$-ary case of the classical proof based on the Lindenbaum algebra of formulas and Boolean ultrafilters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
10.00%
发文量
76
审稿时长
6-12 weeks
期刊介绍: Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering. Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信