基于风力相关变量的虚拟有功功率传感器,用于电力自耗装置

Pub Date : 2024-09-09 DOI:10.1093/jigpal/jzae109
Antonio Díaz-Longueira, Paula Arcano-Bea, Roberto Casado-Vara, Andrés-José Piñón-Pazos, Esteban Jove
{"title":"基于风力相关变量的虚拟有功功率传感器,用于电力自耗装置","authors":"Antonio Díaz-Longueira, Paula Arcano-Bea, Roberto Casado-Vara, Andrés-José Piñón-Pazos, Esteban Jove","doi":"10.1093/jigpal/jzae109","DOIUrl":null,"url":null,"abstract":"Green energy production is expanding in individual and large-scale electricity grids, driven by the imperative to reduce greenhouse gas emissions. This research performs a comparative analysis of several linear and non-linear regression models, intending to identify the most effective method to estimate the active power produced for a mini wind turbine using meteorological variables, looking for a reliable virtual sensor. The modeling process followed a feature selection step before applying eight machine learning techniques whose results were statistically analysed to determine the best performance. The implemented virtual sensor accurately estimated the active power, being an interesting tool for anomaly detection, maintenance management or decision-making.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual active power sensor for eolic self-consumption installations based on wind-related variables\",\"authors\":\"Antonio Díaz-Longueira, Paula Arcano-Bea, Roberto Casado-Vara, Andrés-José Piñón-Pazos, Esteban Jove\",\"doi\":\"10.1093/jigpal/jzae109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green energy production is expanding in individual and large-scale electricity grids, driven by the imperative to reduce greenhouse gas emissions. This research performs a comparative analysis of several linear and non-linear regression models, intending to identify the most effective method to estimate the active power produced for a mini wind turbine using meteorological variables, looking for a reliable virtual sensor. The modeling process followed a feature selection step before applying eight machine learning techniques whose results were statistically analysed to determine the best performance. The implemented virtual sensor accurately estimated the active power, being an interesting tool for anomaly detection, maintenance management or decision-making.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在减少温室气体排放的要求推动下,绿色能源生产在个人和大型电网中不断扩大。本研究对几种线性和非线性回归模型进行了比较分析,旨在找出利用气象变量估算微型风力涡轮机有功功率的最有效方法,并寻找一种可靠的虚拟传感器。建模过程遵循特征选择步骤,然后应用八种机器学习技术,并对其结果进行统计分析,以确定最佳性能。实施的虚拟传感器准确地估算了有功功率,是异常检测、维护管理或决策的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Virtual active power sensor for eolic self-consumption installations based on wind-related variables
Green energy production is expanding in individual and large-scale electricity grids, driven by the imperative to reduce greenhouse gas emissions. This research performs a comparative analysis of several linear and non-linear regression models, intending to identify the most effective method to estimate the active power produced for a mini wind turbine using meteorological variables, looking for a reliable virtual sensor. The modeling process followed a feature selection step before applying eight machine learning techniques whose results were statistically analysed to determine the best performance. The implemented virtual sensor accurately estimated the active power, being an interesting tool for anomaly detection, maintenance management or decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信