{"title":"无光力光学操纵:用于在缓冲气体中捕获和旋转杂质颗粒的深层超晶格","authors":"I V Krasnov","doi":"10.1088/1612-202x/ad6e6e","DOIUrl":null,"url":null,"abstract":"We propose a scheme to obtain a deep optical superlattice (OSL) for resonant impurity particles in a buffer gas. In contrast to the well-known traditional methods of forming optical lattices (supelattices) that are based on the gradient force of radiation pressure, the presented scheme is based on the effect of a light induced drift (LID) in interfering light waves. The principle of its operation is based on the conception of so-called rectified forces induced by interfering bichromatic optical fields, which was developed earlier in the theory of resonant radiation-pressure forces. In the scheme under consideration, a deep OSL (with a period much larger than the optical wavelength) is formed due to the action of the effective rectified force on atomic particles which is proportional to the difference between the frequencies of transport collisions of excited and unexcited particles with buffer gas atoms.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"41 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical manipulations without light forces: deep superlattice for trapping and rotation of impurity particles in a buffer gas\",\"authors\":\"I V Krasnov\",\"doi\":\"10.1088/1612-202x/ad6e6e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a scheme to obtain a deep optical superlattice (OSL) for resonant impurity particles in a buffer gas. In contrast to the well-known traditional methods of forming optical lattices (supelattices) that are based on the gradient force of radiation pressure, the presented scheme is based on the effect of a light induced drift (LID) in interfering light waves. The principle of its operation is based on the conception of so-called rectified forces induced by interfering bichromatic optical fields, which was developed earlier in the theory of resonant radiation-pressure forces. In the scheme under consideration, a deep OSL (with a period much larger than the optical wavelength) is formed due to the action of the effective rectified force on atomic particles which is proportional to the difference between the frequencies of transport collisions of excited and unexcited particles with buffer gas atoms.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad6e6e\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad6e6e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Optical manipulations without light forces: deep superlattice for trapping and rotation of impurity particles in a buffer gas
We propose a scheme to obtain a deep optical superlattice (OSL) for resonant impurity particles in a buffer gas. In contrast to the well-known traditional methods of forming optical lattices (supelattices) that are based on the gradient force of radiation pressure, the presented scheme is based on the effect of a light induced drift (LID) in interfering light waves. The principle of its operation is based on the conception of so-called rectified forces induced by interfering bichromatic optical fields, which was developed earlier in the theory of resonant radiation-pressure forces. In the scheme under consideration, a deep OSL (with a period much larger than the optical wavelength) is formed due to the action of the effective rectified force on atomic particles which is proportional to the difference between the frequencies of transport collisions of excited and unexcited particles with buffer gas atoms.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics