Keke Chen, Zhonghua Zhu, Yuqing Zhang, Xiangyun Fu, Zhaohui Peng, Zhenyan Lu, Yifeng Chai, Zuzhou Xiong, Lei Tan
{"title":"带有三电平巨原子的耦合谐振器波导中的相位介导单光子散射和非互易传输","authors":"Keke Chen, Zhonghua Zhu, Yuqing Zhang, Xiangyun Fu, Zhaohui Peng, Zhenyan Lu, Yifeng Chai, Zuzhou Xiong, Lei Tan","doi":"10.1088/1612-202x/ad6e64","DOIUrl":null,"url":null,"abstract":"We theoretically investigate single-photon scattering and nonreciprocal transmission in a coupled resonator waveguide which is coupled to a driven three-level giant atom via two distant sites. In our system, the local coupling phases are introduced to induce intriguing interference effects. As a result, the phase difference can serve as a sensitive controller for the photon scattering. It is found that the photon scattering properties can be effectively tailored by the size of the giant atom, the driving field and the phase difference. Intriguingly, by carefully tuning the parameters such as the atomic dissipation and the phase difference, a perfect nonreciprocal single-photon transmission can be realized. Additionally, the photon frequency can be adjusted by modulating Rabi frequency of the driving field. These results have significant potential for the development of nonreciprocal optical devices using the giant-atom configuration.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-mediated single-photon scattering and nonreciprocal transmission in a coupled resonator waveguide with a three-level giant atom\",\"authors\":\"Keke Chen, Zhonghua Zhu, Yuqing Zhang, Xiangyun Fu, Zhaohui Peng, Zhenyan Lu, Yifeng Chai, Zuzhou Xiong, Lei Tan\",\"doi\":\"10.1088/1612-202x/ad6e64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically investigate single-photon scattering and nonreciprocal transmission in a coupled resonator waveguide which is coupled to a driven three-level giant atom via two distant sites. In our system, the local coupling phases are introduced to induce intriguing interference effects. As a result, the phase difference can serve as a sensitive controller for the photon scattering. It is found that the photon scattering properties can be effectively tailored by the size of the giant atom, the driving field and the phase difference. Intriguingly, by carefully tuning the parameters such as the atomic dissipation and the phase difference, a perfect nonreciprocal single-photon transmission can be realized. Additionally, the photon frequency can be adjusted by modulating Rabi frequency of the driving field. These results have significant potential for the development of nonreciprocal optical devices using the giant-atom configuration.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad6e64\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad6e64","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Phase-mediated single-photon scattering and nonreciprocal transmission in a coupled resonator waveguide with a three-level giant atom
We theoretically investigate single-photon scattering and nonreciprocal transmission in a coupled resonator waveguide which is coupled to a driven three-level giant atom via two distant sites. In our system, the local coupling phases are introduced to induce intriguing interference effects. As a result, the phase difference can serve as a sensitive controller for the photon scattering. It is found that the photon scattering properties can be effectively tailored by the size of the giant atom, the driving field and the phase difference. Intriguingly, by carefully tuning the parameters such as the atomic dissipation and the phase difference, a perfect nonreciprocal single-photon transmission can be realized. Additionally, the photon frequency can be adjusted by modulating Rabi frequency of the driving field. These results have significant potential for the development of nonreciprocal optical devices using the giant-atom configuration.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics