通过复值神经网络进行量子态分类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu-Chao Dong, Xi-Kun Li, Ming Yang, Yan Lu, Yan-Lin Liao, Arif Ullah, Zhi Lin
{"title":"通过复值神经网络进行量子态分类","authors":"Yu-Chao Dong, Xi-Kun Li, Ming Yang, Yan Lu, Yan-Lin Liao, Arif Ullah, Zhi Lin","doi":"10.1088/1612-202x/ad7246","DOIUrl":null,"url":null,"abstract":"To efficiently complete quantum information processing tasks, quantum neural networks (QNNs) should be introduced rather than the common classical neural networks, but the QNNs in the current noisy intermediate-scale quantum era cannot perform better than classical neural networks because of scale and the efficiency limits. So if the quantum properties can be introduced into classical neural networks, more efficient classical neural networks may be constructed for tasks in the field of quantum information. Complex numbers play an indispensable role in the standard quantum theory, and constitute an important feature in quantum theory. So if complex numbers are introduced in classical neural networks, they may outperform the common classical neural networks in dealing with the tasks in the quantum information field. In this paper, we verify this conjecture by studying quantum state classification via complex-valued neural networks (CVNNs). The numerical results show that the performance of CVNNs is much better than the real-valued neural network in classifying the entangled states. Our results not only provide a new way to improve the performance of artificial neural networks in quantum state classifiers, but also might shed light on the study of CVNNs in the field of other quantum information processing tasks before the appearance of the universal quantum computer.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum state classification via complex-valued neural networks\",\"authors\":\"Yu-Chao Dong, Xi-Kun Li, Ming Yang, Yan Lu, Yan-Lin Liao, Arif Ullah, Zhi Lin\",\"doi\":\"10.1088/1612-202x/ad7246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To efficiently complete quantum information processing tasks, quantum neural networks (QNNs) should be introduced rather than the common classical neural networks, but the QNNs in the current noisy intermediate-scale quantum era cannot perform better than classical neural networks because of scale and the efficiency limits. So if the quantum properties can be introduced into classical neural networks, more efficient classical neural networks may be constructed for tasks in the field of quantum information. Complex numbers play an indispensable role in the standard quantum theory, and constitute an important feature in quantum theory. So if complex numbers are introduced in classical neural networks, they may outperform the common classical neural networks in dealing with the tasks in the quantum information field. In this paper, we verify this conjecture by studying quantum state classification via complex-valued neural networks (CVNNs). The numerical results show that the performance of CVNNs is much better than the real-valued neural network in classifying the entangled states. Our results not only provide a new way to improve the performance of artificial neural networks in quantum state classifiers, but also might shed light on the study of CVNNs in the field of other quantum information processing tasks before the appearance of the universal quantum computer.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad7246\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad7246","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了高效地完成量子信息处理任务,应该引入量子神经网络(QNN)而不是普通的经典神经网络,但由于规模和效率的限制,量子神经网络在当前嘈杂的中尺度量子时代无法表现得比经典神经网络更好。因此,如果能将量子特性引入经典神经网络,就有可能构建出更高效的经典神经网络,用于量子信息领域的任务。复数在标准量子理论中扮演着不可或缺的角色,是量子理论的一个重要特征。因此,如果在经典神经网络中引入复数,它们在处理量子信息领域的任务时可能会优于普通经典神经网络。本文通过研究复值神经网络(CVNN)的量子态分类来验证这一猜想。数值结果表明,在对纠缠态进行分类时,复值神经网络的性能远远优于实值神经网络。我们的研究结果不仅为提高人工神经网络在量子态分类器中的性能提供了一条新途径,而且可能为在通用量子计算机出现之前,在其他量子信息处理任务领域研究复值神经网络提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum state classification via complex-valued neural networks
To efficiently complete quantum information processing tasks, quantum neural networks (QNNs) should be introduced rather than the common classical neural networks, but the QNNs in the current noisy intermediate-scale quantum era cannot perform better than classical neural networks because of scale and the efficiency limits. So if the quantum properties can be introduced into classical neural networks, more efficient classical neural networks may be constructed for tasks in the field of quantum information. Complex numbers play an indispensable role in the standard quantum theory, and constitute an important feature in quantum theory. So if complex numbers are introduced in classical neural networks, they may outperform the common classical neural networks in dealing with the tasks in the quantum information field. In this paper, we verify this conjecture by studying quantum state classification via complex-valued neural networks (CVNNs). The numerical results show that the performance of CVNNs is much better than the real-valued neural network in classifying the entangled states. Our results not only provide a new way to improve the performance of artificial neural networks in quantum state classifiers, but also might shed light on the study of CVNNs in the field of other quantum information processing tasks before the appearance of the universal quantum computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信