Hirotsugu Hino, Kaori Takaki, Mika Kobe, Satoru Mochida
{"title":"开发用于实时检测细胞周期中 CDK/PP2A 平衡的发光探针","authors":"Hirotsugu Hino, Kaori Takaki, Mika Kobe, Satoru Mochida","doi":"10.1111/gtc.13159","DOIUrl":null,"url":null,"abstract":"<p>From a biochemical viewpoint, the cell cycle is controlled by the phosphorylation of cyclin-dependent kinase (CDK) substrates, and the phosphorylation level is determined by the enzymatic balance between CDK and protein phosphatase 2A (PP2A). However, the conventional techniques for analyzing protein phosphorylation using radioisotopes and antibodies involve many operational steps and take days before obtaining results, making them difficult to apply to high-throughput screening and real-time observations. In this study, we developed luminescent probes with a light intensity that changes depending on its phosphorylation state. We modified the Nano-lantern probe (<i>Renilla</i> luciferase-based Ca<sup>2+</sup> probe) by introducing a CDK-substrate peptide and a phosphopeptide-binding domain into the luciferase. Our initial trial resulted in new probes that could report the CDK/PP2A balance in a purified system. Further modifications of these probes (replacing the phospho-Ser with phospho-Thr and randomly replacing its surrounding amino acids) improved the dynamic range by up to four-fold, making them practical for use in the <i>Xenopus</i> egg extracts system, where many physiological events can be reproduced. Taken together, our new probes enabled the monitoring of the CDK/PP2A balance in real time, and are applicable to high-throughput systems; the new probes thus appear promising for use in substrate and drug screening.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of luminescent probes for real-time detection of the CDK/PP2A balance during the cell cycle\",\"authors\":\"Hirotsugu Hino, Kaori Takaki, Mika Kobe, Satoru Mochida\",\"doi\":\"10.1111/gtc.13159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>From a biochemical viewpoint, the cell cycle is controlled by the phosphorylation of cyclin-dependent kinase (CDK) substrates, and the phosphorylation level is determined by the enzymatic balance between CDK and protein phosphatase 2A (PP2A). However, the conventional techniques for analyzing protein phosphorylation using radioisotopes and antibodies involve many operational steps and take days before obtaining results, making them difficult to apply to high-throughput screening and real-time observations. In this study, we developed luminescent probes with a light intensity that changes depending on its phosphorylation state. We modified the Nano-lantern probe (<i>Renilla</i> luciferase-based Ca<sup>2+</sup> probe) by introducing a CDK-substrate peptide and a phosphopeptide-binding domain into the luciferase. Our initial trial resulted in new probes that could report the CDK/PP2A balance in a purified system. Further modifications of these probes (replacing the phospho-Ser with phospho-Thr and randomly replacing its surrounding amino acids) improved the dynamic range by up to four-fold, making them practical for use in the <i>Xenopus</i> egg extracts system, where many physiological events can be reproduced. Taken together, our new probes enabled the monitoring of the CDK/PP2A balance in real time, and are applicable to high-throughput systems; the new probes thus appear promising for use in substrate and drug screening.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13159\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13159","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of luminescent probes for real-time detection of the CDK/PP2A balance during the cell cycle
From a biochemical viewpoint, the cell cycle is controlled by the phosphorylation of cyclin-dependent kinase (CDK) substrates, and the phosphorylation level is determined by the enzymatic balance between CDK and protein phosphatase 2A (PP2A). However, the conventional techniques for analyzing protein phosphorylation using radioisotopes and antibodies involve many operational steps and take days before obtaining results, making them difficult to apply to high-throughput screening and real-time observations. In this study, we developed luminescent probes with a light intensity that changes depending on its phosphorylation state. We modified the Nano-lantern probe (Renilla luciferase-based Ca2+ probe) by introducing a CDK-substrate peptide and a phosphopeptide-binding domain into the luciferase. Our initial trial resulted in new probes that could report the CDK/PP2A balance in a purified system. Further modifications of these probes (replacing the phospho-Ser with phospho-Thr and randomly replacing its surrounding amino acids) improved the dynamic range by up to four-fold, making them practical for use in the Xenopus egg extracts system, where many physiological events can be reproduced. Taken together, our new probes enabled the monitoring of the CDK/PP2A balance in real time, and are applicable to high-throughput systems; the new probes thus appear promising for use in substrate and drug screening.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.