{"title":"碰撞和凝聚对海洋雾微观物理的作用","authors":"Camilo F. Rodriguez‐Geno, David H. Richter","doi":"10.1002/qj.4831","DOIUrl":null,"url":null,"abstract":"Cloud microphysics fulfills a fundamental role in the formation and evolution of marine fog, but it is not fully understood. Numerous studies have addressed this by means of direct observations and modeling efforts. However, collision–coalescence of aerosols and fog droplets is a process often neglected. In this study we perform an analysis of the role of particle collections on the formation, development, and microphysical structure of marine fog. It was found that collisions open a path for aerosol activation by means of collisional activation. In addition, collisions contribute to the diffusional activation of fog particles by adding water mass to the growing aerosols, making them reach the required critical radius faster. Furthermore, collisions have a homogenizing effect on hygroscopicity, facilitating the activation of accumulation‐mode aerosols by increasing their diffusional growth.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"7 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of collision and coalescence on the microphysics of marine fog\",\"authors\":\"Camilo F. Rodriguez‐Geno, David H. Richter\",\"doi\":\"10.1002/qj.4831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud microphysics fulfills a fundamental role in the formation and evolution of marine fog, but it is not fully understood. Numerous studies have addressed this by means of direct observations and modeling efforts. However, collision–coalescence of aerosols and fog droplets is a process often neglected. In this study we perform an analysis of the role of particle collections on the formation, development, and microphysical structure of marine fog. It was found that collisions open a path for aerosol activation by means of collisional activation. In addition, collisions contribute to the diffusional activation of fog particles by adding water mass to the growing aerosols, making them reach the required critical radius faster. Furthermore, collisions have a homogenizing effect on hygroscopicity, facilitating the activation of accumulation‐mode aerosols by increasing their diffusional growth.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4831\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4831","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The role of collision and coalescence on the microphysics of marine fog
Cloud microphysics fulfills a fundamental role in the formation and evolution of marine fog, but it is not fully understood. Numerous studies have addressed this by means of direct observations and modeling efforts. However, collision–coalescence of aerosols and fog droplets is a process often neglected. In this study we perform an analysis of the role of particle collections on the formation, development, and microphysical structure of marine fog. It was found that collisions open a path for aerosol activation by means of collisional activation. In addition, collisions contribute to the diffusional activation of fog particles by adding water mass to the growing aerosols, making them reach the required critical radius faster. Furthermore, collisions have a homogenizing effect on hygroscopicity, facilitating the activation of accumulation‐mode aerosols by increasing their diffusional growth.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.