{"title":"日周期性斜坡风的分析模型。第 2 部分:解决方案","authors":"Mattia Marchio, Sofia Farina, Dino Zardi","doi":"10.1002/qj.4787","DOIUrl":null,"url":null,"abstract":"This article presents an analytical model for the diurnal cycle of slope‐normal profiles of potential temperature and wind speed characterizing thermally driven slope winds, generated by a daily‐periodic surface energy budget. The model extends the solution proposed by Zardi and Serafin, originally formulated for a pure sinusoidal surface forcing temperature. To account for the asymmetric features characterizing the daytime and nighttime phases, a full Fourier series expansion is derived, the coefficients and phases of which are prescribed from the surface energy budget driven by the daily‐periodic radiation model described in Part 1 of the present work. The model is applicable for any slope angle () and orientation, at any latitude and elevation (up to 2500 m), and for all seasons. Despite some inherent limitations, the most remarkable being the absence of moist processes and latent heat fluxes, the model captures most key features of daily‐periodic slope wind systems, in particular the asymmetry between daytime and nighttime phases. Moreover, it allows exploration of the sensitivity of these flows to the various factors concurring in their development, and offers a basis for more realistic analytical solutions for slope winds.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"160 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical model for daily‐periodic slope winds. Part 2: Solutions\",\"authors\":\"Mattia Marchio, Sofia Farina, Dino Zardi\",\"doi\":\"10.1002/qj.4787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an analytical model for the diurnal cycle of slope‐normal profiles of potential temperature and wind speed characterizing thermally driven slope winds, generated by a daily‐periodic surface energy budget. The model extends the solution proposed by Zardi and Serafin, originally formulated for a pure sinusoidal surface forcing temperature. To account for the asymmetric features characterizing the daytime and nighttime phases, a full Fourier series expansion is derived, the coefficients and phases of which are prescribed from the surface energy budget driven by the daily‐periodic radiation model described in Part 1 of the present work. The model is applicable for any slope angle () and orientation, at any latitude and elevation (up to 2500 m), and for all seasons. Despite some inherent limitations, the most remarkable being the absence of moist processes and latent heat fluxes, the model captures most key features of daily‐periodic slope wind systems, in particular the asymmetry between daytime and nighttime phases. Moreover, it allows exploration of the sensitivity of these flows to the various factors concurring in their development, and offers a basis for more realistic analytical solutions for slope winds.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4787\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4787","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
An analytical model for daily‐periodic slope winds. Part 2: Solutions
This article presents an analytical model for the diurnal cycle of slope‐normal profiles of potential temperature and wind speed characterizing thermally driven slope winds, generated by a daily‐periodic surface energy budget. The model extends the solution proposed by Zardi and Serafin, originally formulated for a pure sinusoidal surface forcing temperature. To account for the asymmetric features characterizing the daytime and nighttime phases, a full Fourier series expansion is derived, the coefficients and phases of which are prescribed from the surface energy budget driven by the daily‐periodic radiation model described in Part 1 of the present work. The model is applicable for any slope angle () and orientation, at any latitude and elevation (up to 2500 m), and for all seasons. Despite some inherent limitations, the most remarkable being the absence of moist processes and latent heat fluxes, the model captures most key features of daily‐periodic slope wind systems, in particular the asymmetry between daytime and nighttime phases. Moreover, it allows exploration of the sensitivity of these flows to the various factors concurring in their development, and offers a basis for more realistic analytical solutions for slope winds.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.