在 CMA-GFS 4D-VAR 系统中对俄罗斯新卫星 meteor-M N2-2 上的 MTVZA-GY 辐射数据进行首次同化试验

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Hongyi Xiao, Wei Han, Yang Han, Hao Hu, Yining Shi, Yihong Bai, Yuanyuan Liu
{"title":"在 CMA-GFS 4D-VAR 系统中对俄罗斯新卫星 meteor-M N2-2 上的 MTVZA-GY 辐射数据进行首次同化试验","authors":"Hongyi Xiao, Wei Han, Yang Han, Hao Hu, Yining Shi, Yihong Bai, Yuanyuan Liu","doi":"10.1002/qj.4853","DOIUrl":null,"url":null,"abstract":"The Imaging/Sounding Microwave Radiometer–Improved (MTVZA‐GY) on board the Russian meteorological satellite, Meteor‐M N2‐2, launched in 2019, provides daily observations of Earth's atmosphere and surface from a polar orbit. Here, its performance in a numerical prediction model – the Global/Regional Assimilation and Prediction System–Global Forecast System (CMA_GFS), which involves the Advanced Radiative Transfer Modeling System (ARMS) – was evaluated. After supplementing some lacking information during data preprocessing, the characteristics of all available channels (24 in total) were evaluated by comparison among channels, with background fields, and with similar active instruments in CMA‐GFS, as well as between different radiative transfer models. Failed calibration was found in all window channels. Scan position biases, ascending/descending biases, and striping noises were widely discovered in temperature‐sounding channels, as well as larger biases in humidity‐sounding channels. Following quality control and bias correction, only two temperature‐sounding channels were feasible for assimilation into CMA‐GFS within the observational errors calculated by the a posteriori verification scheme. A one‐month experiment confirmed that these two channels have positive impacts on the analysis of both thermal and dynamic fields, as well as short‐term weather forecasting in the Northern Hemisphere and tropics. Short‐term global forecasting of moderate rainfall was also improved. This work is a pioneering attempt at examining the potential and impacts of assimilating MTVZA‐GY in a numerical weather prediction model system. It also provides guidance for the manufacture and usage of the instruments that will be on board the three satellites planned for launch by the Russian Federation in the next three years.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system\",\"authors\":\"Hongyi Xiao, Wei Han, Yang Han, Hao Hu, Yining Shi, Yihong Bai, Yuanyuan Liu\",\"doi\":\"10.1002/qj.4853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Imaging/Sounding Microwave Radiometer–Improved (MTVZA‐GY) on board the Russian meteorological satellite, Meteor‐M N2‐2, launched in 2019, provides daily observations of Earth's atmosphere and surface from a polar orbit. Here, its performance in a numerical prediction model – the Global/Regional Assimilation and Prediction System–Global Forecast System (CMA_GFS), which involves the Advanced Radiative Transfer Modeling System (ARMS) – was evaluated. After supplementing some lacking information during data preprocessing, the characteristics of all available channels (24 in total) were evaluated by comparison among channels, with background fields, and with similar active instruments in CMA‐GFS, as well as between different radiative transfer models. Failed calibration was found in all window channels. Scan position biases, ascending/descending biases, and striping noises were widely discovered in temperature‐sounding channels, as well as larger biases in humidity‐sounding channels. Following quality control and bias correction, only two temperature‐sounding channels were feasible for assimilation into CMA‐GFS within the observational errors calculated by the a posteriori verification scheme. A one‐month experiment confirmed that these two channels have positive impacts on the analysis of both thermal and dynamic fields, as well as short‐term weather forecasting in the Northern Hemisphere and tropics. Short‐term global forecasting of moderate rainfall was also improved. This work is a pioneering attempt at examining the potential and impacts of assimilating MTVZA‐GY in a numerical weather prediction model system. It also provides guidance for the manufacture and usage of the instruments that will be on board the three satellites planned for launch by the Russian Federation in the next three years.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4853\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4853","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2019年发射的俄罗斯气象卫星Meteor-M N2-2上搭载的成像/探空微波辐射计改进版(MTVZA-GY)从极地轨道对地球大气层和地表进行日常观测。在此,对其在数值预报模式--全球/区域同化和预报系统--全球预报系统(CMA_GFS)中的性能进行了评估,该模式涉及高级辐射传输建模系统(ARMS)。在对数据预处理过程中缺乏的一些信息进行补充后,通过对各信道之间、与背景场之间、与 CMA-GFS 中类似的有源仪器之间以及不同辐射传输模式之间进行比较,对所有可用信道(共 24 个)的特性进行了评估。发现所有窗口通道的校准都失败了。温度声道普遍存在扫描位置偏差、上升/下降偏差和条纹噪声,湿度声道的偏差更大。经过质量控制和偏差校正,只有两个温度声道可以在后验方案计算出的观测误差范围内同化到 CMA-GFS 中。为期一个月的实验证实,这两个信道对热场和动力场的分析以及北半球和热带地区的短期天气预报都有积极影响。全球短期中雨预报也得到了改善。这项工作是研究在数值天气预报模式系统中吸收 MTVZA-GY 的潜力和影响的一次开创性尝试。它还为俄罗斯联邦计划在今后三年发射的三颗卫星上的仪器的制造和使用提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
The Imaging/Sounding Microwave Radiometer–Improved (MTVZA‐GY) on board the Russian meteorological satellite, Meteor‐M N2‐2, launched in 2019, provides daily observations of Earth's atmosphere and surface from a polar orbit. Here, its performance in a numerical prediction model – the Global/Regional Assimilation and Prediction System–Global Forecast System (CMA_GFS), which involves the Advanced Radiative Transfer Modeling System (ARMS) – was evaluated. After supplementing some lacking information during data preprocessing, the characteristics of all available channels (24 in total) were evaluated by comparison among channels, with background fields, and with similar active instruments in CMA‐GFS, as well as between different radiative transfer models. Failed calibration was found in all window channels. Scan position biases, ascending/descending biases, and striping noises were widely discovered in temperature‐sounding channels, as well as larger biases in humidity‐sounding channels. Following quality control and bias correction, only two temperature‐sounding channels were feasible for assimilation into CMA‐GFS within the observational errors calculated by the a posteriori verification scheme. A one‐month experiment confirmed that these two channels have positive impacts on the analysis of both thermal and dynamic fields, as well as short‐term weather forecasting in the Northern Hemisphere and tropics. Short‐term global forecasting of moderate rainfall was also improved. This work is a pioneering attempt at examining the potential and impacts of assimilating MTVZA‐GY in a numerical weather prediction model system. It also provides guidance for the manufacture and usage of the instruments that will be on board the three satellites planned for launch by the Russian Federation in the next three years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信