{"title":"非平衡质量输运过程中电流和质量的动态波动","authors":"Animesh Hazra, Anirban Mukherjee, Punyabrata Pradhan","doi":"10.1088/1742-5468/ad5c56","DOIUrl":null,"url":null,"abstract":"We study steady-state dynamic fluctuations of current and mass in several variants of random average processes on a ring of <italic toggle=\"yes\">L</italic> sites. These processes violate detailed balance in the bulk and have nontrivial spatial structures: their steady states are not described by the Boltzmann–Gibbs distribution and can have nonzero spatial correlations. Using a microscopic approach, we exactly calculate the second cumulants, or the variance, <inline-formula>\n<tex-math><?CDATA $\\langle \\mathcal{Q}_i^2(T) \\rangle_c$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $\\langle \\mathcal{Q}_{\\textrm{sub}}^2(l, T) \\rangle_c$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mtext>sub</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>l</mml:mi><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, of cumulative (time-integrated) currents up to time <italic toggle=\"yes\">T</italic> across the <italic toggle=\"yes\">i</italic>th bond and across a subsystem of size <italic toggle=\"yes\">l</italic> (summed over bonds in the subsystem), respectively. We also calculate the (two-point) dynamic correlation function of the subsystem mass. In particular, we show that, for large <inline-formula>\n<tex-math><?CDATA $L \\gg 1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>L</mml:mi><mml:mo>≫</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, the second cumulant <inline-formula>\n<tex-math><?CDATA $\\langle \\mathcal{Q}_i^2(T) \\rangle_c$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of the cumulative current up to time <italic toggle=\"yes\">T</italic> across the <italic toggle=\"yes\">i</italic>th bond grows linearly as <inline-formula>\n<tex-math><?CDATA $\\langle \\mathcal{Q}_i^2 \\rangle_c \\sim T$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:mi>T</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> for initial times <inline-formula>\n<tex-math><?CDATA $T \\sim {\\cal O}(1)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>T</mml:mi><mml:mo>∼</mml:mo><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, subdiffusively as <inline-formula>\n<tex-math><?CDATA $\\langle Q_i^2 \\rangle_c \\sim T^{1/2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mi>Q</mml:mi><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:msup><mml:mi>T</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> for intermediate times <inline-formula>\n<tex-math><?CDATA $1 \\ll T \\ll L^2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>1</mml:mn><mml:mo>≪</mml:mo><mml:mi>T</mml:mi><mml:mo>≪</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, and then again linearly as <inline-formula>\n<tex-math><?CDATA $\\langle \\mathcal{Q}_i^2 \\rangle_c \\sim T$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:mi>T</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> for long times <inline-formula>\n<tex-math><?CDATA $T \\gg L^2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>T</mml:mi><mml:mo>≫</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn10.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The scaled cumulant <inline-formula>\n<tex-math><?CDATA $\\lim_{l \\rightarrow \\infty, T \\rightarrow \\infty} \\langle \\mathcal{Q}_{\\textrm{sub}}^2(l, T) \\rangle_c/2lT$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:munder><mml:mo movablelimits=\"true\">lim</mml:mo><mml:mrow><mml:mi>l</mml:mi><mml:mo stretchy=\"false\">→</mml:mo><mml:mi mathvariant=\"normal\">∞</mml:mi><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">→</mml:mo><mml:mi mathvariant=\"normal\">∞</mml:mi></mml:mrow></mml:munder><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mtext>sub</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>l</mml:mi><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn><mml:mi>l</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn11.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of current across the subsystem of size <italic toggle=\"yes\">l</italic> and up to time <italic toggle=\"yes\">T</italic> converges to the density-dependent particle mobility <inline-formula>\n<tex-math><?CDATA $\\chi(\\rho)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>χ</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>ρ</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn12.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> when the large subsystem-size limit is taken first, followed by the large-time limit; when the limits are reversed, it simply vanishes. Remarkably, regardless of the dynamical rules, the scaled current cumulant <inline-formula>\n<tex-math><?CDATA $D \\langle \\mathcal{Q}_i^2(T)\\rangle_c/2 \\chi L \\equiv {\\cal W}(y)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>D</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn><mml:mi>χ</mml:mi><mml:mi>L</mml:mi><mml:mo>≡</mml:mo><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn13.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> as a function of scaled time <inline-formula>\n<tex-math><?CDATA $y = DT/L^2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>y</mml:mi><mml:mo>=</mml:mo><mml:mi>D</mml:mi><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn14.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> can be expressed in terms of a universal scaling function <inline-formula>\n<tex-math><?CDATA ${\\cal W}(y)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn15.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, where <italic toggle=\"yes\">D</italic> is the bulk-diffusion coefficient; interestingly, the intermediate-time subdiffusive and long-time diffusive growths can be connected through a single scaling function <inline-formula>\n<tex-math><?CDATA ${\\cal W}(y)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad5c56ieqn16.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The power spectra for current and mass are also exactly characterized by the respective scaling functions. Furthermore, we provide a microscopic derivation of equilibrium-like Green–Kubo and Einstein relations that connect the steady-state current fluctuations to an ‘operational’ mobility (i.e. the response to an external force field) and mass fluctuation, respectively.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"70 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic fluctuations of current and mass in nonequilibrium mass transport processes\",\"authors\":\"Animesh Hazra, Anirban Mukherjee, Punyabrata Pradhan\",\"doi\":\"10.1088/1742-5468/ad5c56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study steady-state dynamic fluctuations of current and mass in several variants of random average processes on a ring of <italic toggle=\\\"yes\\\">L</italic> sites. These processes violate detailed balance in the bulk and have nontrivial spatial structures: their steady states are not described by the Boltzmann–Gibbs distribution and can have nonzero spatial correlations. Using a microscopic approach, we exactly calculate the second cumulants, or the variance, <inline-formula>\\n<tex-math><?CDATA $\\\\langle \\\\mathcal{Q}_i^2(T) \\\\rangle_c$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math><?CDATA $\\\\langle \\\\mathcal{Q}_{\\\\textrm{sub}}^2(l, T) \\\\rangle_c$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mtext>sub</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>l</mml:mi><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, of cumulative (time-integrated) currents up to time <italic toggle=\\\"yes\\\">T</italic> across the <italic toggle=\\\"yes\\\">i</italic>th bond and across a subsystem of size <italic toggle=\\\"yes\\\">l</italic> (summed over bonds in the subsystem), respectively. We also calculate the (two-point) dynamic correlation function of the subsystem mass. In particular, we show that, for large <inline-formula>\\n<tex-math><?CDATA $L \\\\gg 1$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>L</mml:mi><mml:mo>≫</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, the second cumulant <inline-formula>\\n<tex-math><?CDATA $\\\\langle \\\\mathcal{Q}_i^2(T) \\\\rangle_c$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> of the cumulative current up to time <italic toggle=\\\"yes\\\">T</italic> across the <italic toggle=\\\"yes\\\">i</italic>th bond grows linearly as <inline-formula>\\n<tex-math><?CDATA $\\\\langle \\\\mathcal{Q}_i^2 \\\\rangle_c \\\\sim T$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:mi>T</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> for initial times <inline-formula>\\n<tex-math><?CDATA $T \\\\sim {\\\\cal O}(1)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>T</mml:mi><mml:mo>∼</mml:mo><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, subdiffusively as <inline-formula>\\n<tex-math><?CDATA $\\\\langle Q_i^2 \\\\rangle_c \\\\sim T^{1/2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msubsup><mml:mi>Q</mml:mi><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:msup><mml:mi>T</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> for intermediate times <inline-formula>\\n<tex-math><?CDATA $1 \\\\ll T \\\\ll L^2$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo>≪</mml:mo><mml:mi>T</mml:mi><mml:mo>≪</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, and then again linearly as <inline-formula>\\n<tex-math><?CDATA $\\\\langle \\\\mathcal{Q}_i^2 \\\\rangle_c \\\\sim T$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:mi>T</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn9.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> for long times <inline-formula>\\n<tex-math><?CDATA $T \\\\gg L^2$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>T</mml:mi><mml:mo>≫</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn10.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The scaled cumulant <inline-formula>\\n<tex-math><?CDATA $\\\\lim_{l \\\\rightarrow \\\\infty, T \\\\rightarrow \\\\infty} \\\\langle \\\\mathcal{Q}_{\\\\textrm{sub}}^2(l, T) \\\\rangle_c/2lT$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:munder><mml:mo movablelimits=\\\"true\\\">lim</mml:mo><mml:mrow><mml:mi>l</mml:mi><mml:mo stretchy=\\\"false\\\">→</mml:mo><mml:mi mathvariant=\\\"normal\\\">∞</mml:mi><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\\\"false\\\">→</mml:mo><mml:mi mathvariant=\\\"normal\\\">∞</mml:mi></mml:mrow></mml:munder><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mtext>sub</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>l</mml:mi><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn><mml:mi>l</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn11.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> of current across the subsystem of size <italic toggle=\\\"yes\\\">l</italic> and up to time <italic toggle=\\\"yes\\\">T</italic> converges to the density-dependent particle mobility <inline-formula>\\n<tex-math><?CDATA $\\\\chi(\\\\rho)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>χ</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>ρ</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn12.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> when the large subsystem-size limit is taken first, followed by the large-time limit; when the limits are reversed, it simply vanishes. Remarkably, regardless of the dynamical rules, the scaled current cumulant <inline-formula>\\n<tex-math><?CDATA $D \\\\langle \\\\mathcal{Q}_i^2(T)\\\\rangle_c/2 \\\\chi L \\\\equiv {\\\\cal W}(y)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>D</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn><mml:mi>χ</mml:mi><mml:mi>L</mml:mi><mml:mo>≡</mml:mo><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn13.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> as a function of scaled time <inline-formula>\\n<tex-math><?CDATA $y = DT/L^2$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>y</mml:mi><mml:mo>=</mml:mo><mml:mi>D</mml:mi><mml:mi>T</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn14.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> can be expressed in terms of a universal scaling function <inline-formula>\\n<tex-math><?CDATA ${\\\\cal W}(y)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn15.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, where <italic toggle=\\\"yes\\\">D</italic> is the bulk-diffusion coefficient; interestingly, the intermediate-time subdiffusive and long-time diffusive growths can be connected through a single scaling function <inline-formula>\\n<tex-math><?CDATA ${\\\\cal W}(y)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad5c56ieqn16.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The power spectra for current and mass are also exactly characterized by the respective scaling functions. Furthermore, we provide a microscopic derivation of equilibrium-like Green–Kubo and Einstein relations that connect the steady-state current fluctuations to an ‘operational’ mobility (i.e. the response to an external force field) and mass fluctuation, respectively.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad5c56\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad5c56","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了由 L 个位点组成的环上随机平均过程的几种变体中电流和质量的稳态动态波动。这些过程违反了大体的详细平衡,具有非对称的空间结构:它们的稳态不是由玻尔兹曼-吉布斯分布描述的,可能具有非零空间相关性。利用微观方法,我们分别精确计算了第 i 个键和大小为 l 的子系统(子系统中各键的总和)截至时间 T 的累积(时间积分)电流的二次累积量或方差⟨Qi2(T)⟩c 和⟨Qsub2(l,T)⟩c。我们还计算了子系统质量的(两点)动态相关函数。我们特别指出,对于大 L≫1,在初始时间 T∼O(1)时,直到时间 T 跨第 i 个键的累积电流的第二累积量⟨Qi2(T)⟩c 以⟨Qi2⟩c∼T 的线性方式增长、对于中间时间 1≪T≪L2,以⟨Qi2⟩c∼T1/2 的方式线性增长;对于长时间 T≫L2 ,以⟨Qi2⟩c∼T 的方式线性增长。当先取大子系统尺寸极限,后取大时间极限时,大小为 l 的子系统上的电流到时间 T 的标度累积量 liml→∞,T→∞⟨Qsub2(l,T)⟩c/2lT 收敛到与密度相关的粒子迁移率 χ(ρ) ;当极限相反时,它直接消失。值得注意的是,无论动力学规则如何,作为标度时间 y=DT/L2 函数的标度电流累积量 D⟨Qi2(T)⟩c/2χL≡W(y)都可以用一个通用的标度函数 W(y) 来表示,其中 D 是体扩散系数;有趣的是,中时间亚扩散增长和长时间扩散增长可以通过一个标度函数 W(y) 连接起来。电流和质量的功率谱也由各自的缩放函数精确表征。此外,我们还从微观上推导出了类似于平衡的格林-久保关系和爱因斯坦关系,它们分别将稳态电流波动与 "运行 "流动性(即对外部力场的响应)和质量波动联系起来。
Dynamic fluctuations of current and mass in nonequilibrium mass transport processes
We study steady-state dynamic fluctuations of current and mass in several variants of random average processes on a ring of L sites. These processes violate detailed balance in the bulk and have nontrivial spatial structures: their steady states are not described by the Boltzmann–Gibbs distribution and can have nonzero spatial correlations. Using a microscopic approach, we exactly calculate the second cumulants, or the variance, ⟨Qi2(T)⟩c and ⟨Qsub2(l,T)⟩c, of cumulative (time-integrated) currents up to time T across the ith bond and across a subsystem of size l (summed over bonds in the subsystem), respectively. We also calculate the (two-point) dynamic correlation function of the subsystem mass. In particular, we show that, for large L≫1, the second cumulant ⟨Qi2(T)⟩c of the cumulative current up to time T across the ith bond grows linearly as ⟨Qi2⟩c∼T for initial times T∼O(1), subdiffusively as ⟨Qi2⟩c∼T1/2 for intermediate times 1≪T≪L2, and then again linearly as ⟨Qi2⟩c∼T for long times T≫L2. The scaled cumulant liml→∞,T→∞⟨Qsub2(l,T)⟩c/2lT of current across the subsystem of size l and up to time T converges to the density-dependent particle mobility χ(ρ) when the large subsystem-size limit is taken first, followed by the large-time limit; when the limits are reversed, it simply vanishes. Remarkably, regardless of the dynamical rules, the scaled current cumulant D⟨Qi2(T)⟩c/2χL≡W(y) as a function of scaled time y=DT/L2 can be expressed in terms of a universal scaling function W(y), where D is the bulk-diffusion coefficient; interestingly, the intermediate-time subdiffusive and long-time diffusive growths can be connected through a single scaling function W(y). The power spectra for current and mass are also exactly characterized by the respective scaling functions. Furthermore, we provide a microscopic derivation of equilibrium-like Green–Kubo and Einstein relations that connect the steady-state current fluctuations to an ‘operational’ mobility (i.e. the response to an external force field) and mass fluctuation, respectively.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina