密闭 1d 短程里兹气体的全计数统计

IF 2.2 3区 物理与天体物理 Q2 MECHANICS
Jitendra Kethepalli, Manas Kulkarni, Anupam Kundu, Satya N Majumdar, David Mukamel, Grégory Schehr
{"title":"密闭 1d 短程里兹气体的全计数统计","authors":"Jitendra Kethepalli, Manas Kulkarni, Anupam Kundu, Satya N Majumdar, David Mukamel, Grégory Schehr","doi":"10.1088/1742-5468/ad66c5","DOIUrl":null,"url":null,"abstract":"We investigate the full counting statistics of a harmonically confined 1d short range Riesz gas consisting of <italic toggle=\"yes\">N</italic> particles in equilibrium at finite temperature. The particles interact with each other through a repulsive power-law interaction with an exponent <italic toggle=\"yes\">k</italic> &gt; 1 which includes the Calogero–Moser model for <italic toggle=\"yes\">k</italic> = 2. We examine the probability distribution of the number of particles in a finite domain <inline-formula>\n<tex-math><?CDATA $[-W, W]$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">[</mml:mo><mml:mo>−</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>W</mml:mi><mml:mo stretchy=\"false\">]</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> called number distribution, denoted by <inline-formula>\n<tex-math><?CDATA $\\mathcal{N}(W, N)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. We analyze the probability distribution of <inline-formula>\n<tex-math><?CDATA $\\mathcal{N}(W, N)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and show that it exhibits a large deviation form for large <italic toggle=\"yes\">N</italic> characterized by a speed <inline-formula>\n<tex-math><?CDATA $N^{\\frac{3k+2}{k+2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:mfrac><mml:mrow><mml:mn>3</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and by a large deviation function (LDF) of the fraction <inline-formula>\n<tex-math><?CDATA $c = \\mathcal{N}(W, N)/N$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of the particles inside the domain and <italic toggle=\"yes\">W</italic>. We show that the density profiles that create the large deviations display interesting shape transitions as one varies <italic toggle=\"yes\">c</italic> and <italic toggle=\"yes\">W</italic>. This is manifested by a third-order phase transition exhibited by the LDF that has discontinuous third derivatives. Monte–Carlo simulations based on Metropolis–Hashtings (MH) algorithm show good agreement with our analytical expressions for the corresponding density profiles. We find that the typical fluctuations of <inline-formula>\n<tex-math><?CDATA $\\mathcal{N}(W, N)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, obtained from our field theoretic calculations are Gaussian distributed with a variance that scales as <inline-formula>\n<tex-math><?CDATA $N^{\\nu_k}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:msub><mml:mi>ν</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, with <inline-formula>\n<tex-math><?CDATA $\\nu_k = (2-k)/(2+k)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>ν</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. We also present some numerical findings on the mean and the variance. Furthermore, we adapt our formalism to study the index distribution (where the domain is semi-infinite <inline-formula>\n<tex-math><?CDATA $(-\\infty, W])$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mo>−</mml:mo><mml:mi mathvariant=\"normal\">∞</mml:mi><mml:mo>,</mml:mo><mml:mi>W</mml:mi><mml:mo stretchy=\"false\">]</mml:mo><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad66c5ieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, linear statistics (the variance), thermodynamic pressure and bulk modulus.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"45 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full counting statistics of 1d short range Riesz gases in confinement\",\"authors\":\"Jitendra Kethepalli, Manas Kulkarni, Anupam Kundu, Satya N Majumdar, David Mukamel, Grégory Schehr\",\"doi\":\"10.1088/1742-5468/ad66c5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the full counting statistics of a harmonically confined 1d short range Riesz gas consisting of <italic toggle=\\\"yes\\\">N</italic> particles in equilibrium at finite temperature. The particles interact with each other through a repulsive power-law interaction with an exponent <italic toggle=\\\"yes\\\">k</italic> &gt; 1 which includes the Calogero–Moser model for <italic toggle=\\\"yes\\\">k</italic> = 2. We examine the probability distribution of the number of particles in a finite domain <inline-formula>\\n<tex-math><?CDATA $[-W, W]$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">[</mml:mo><mml:mo>−</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>W</mml:mi><mml:mo stretchy=\\\"false\\\">]</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> called number distribution, denoted by <inline-formula>\\n<tex-math><?CDATA $\\\\mathcal{N}(W, N)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. We analyze the probability distribution of <inline-formula>\\n<tex-math><?CDATA $\\\\mathcal{N}(W, N)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and show that it exhibits a large deviation form for large <italic toggle=\\\"yes\\\">N</italic> characterized by a speed <inline-formula>\\n<tex-math><?CDATA $N^{\\\\frac{3k+2}{k+2}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:mfrac><mml:mrow><mml:mn>3</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and by a large deviation function (LDF) of the fraction <inline-formula>\\n<tex-math><?CDATA $c = \\\\mathcal{N}(W, N)/N$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> of the particles inside the domain and <italic toggle=\\\"yes\\\">W</italic>. We show that the density profiles that create the large deviations display interesting shape transitions as one varies <italic toggle=\\\"yes\\\">c</italic> and <italic toggle=\\\"yes\\\">W</italic>. This is manifested by a third-order phase transition exhibited by the LDF that has discontinuous third derivatives. Monte–Carlo simulations based on Metropolis–Hashtings (MH) algorithm show good agreement with our analytical expressions for the corresponding density profiles. We find that the typical fluctuations of <inline-formula>\\n<tex-math><?CDATA $\\\\mathcal{N}(W, N)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, obtained from our field theoretic calculations are Gaussian distributed with a variance that scales as <inline-formula>\\n<tex-math><?CDATA $N^{\\\\nu_k}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:msub><mml:mi>ν</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:mrow></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, with <inline-formula>\\n<tex-math><?CDATA $\\\\nu_k = (2-k)/(2+k)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>ν</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. We also present some numerical findings on the mean and the variance. Furthermore, we adapt our formalism to study the index distribution (where the domain is semi-infinite <inline-formula>\\n<tex-math><?CDATA $(-\\\\infty, W])$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mo>−</mml:mo><mml:mi mathvariant=\\\"normal\\\">∞</mml:mi><mml:mo>,</mml:mo><mml:mi>W</mml:mi><mml:mo stretchy=\\\"false\\\">]</mml:mo><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"jstatad66c5ieqn9.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, linear statistics (the variance), thermodynamic pressure and bulk modulus.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad66c5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad66c5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由 N 个在有限温度下处于平衡状态的粒子组成的谐约束 1d 短程里兹气体的全计数统计。粒子通过指数为 k > 1 的幂律斥力相互作用相互影响,其中包括 k = 2 的卡洛吉罗-莫泽模型。我们研究的是有限域 [-W,W] 中粒子数量的概率分布,称为数量分布,用 N(W,N) 表示。我们分析了 N(W,N)的概率分布,并证明它在大 N 的情况下表现出大偏差形式,其特征是速度 N3k+2k+2 和域内粒子分数 c=N(W,N)/N 的大偏差函数 (LDF)。基于 Metropolis-Hashtings(MH)算法的蒙特卡洛模拟结果表明,我们对相应密度曲线的分析表达式与之非常吻合。我们发现,通过场论计算得到的 N(W,N)的典型波动是高斯分布的,其方差与 Nνk 成比例,νk=(2-k)/(2+k)。我们还给出了一些关于均值和方差的数值结果。此外,我们还调整了形式主义,以研究指数分布(域为半无限(-∞,W])、线性统计(方差)、热力学压力和体积模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full counting statistics of 1d short range Riesz gases in confinement
We investigate the full counting statistics of a harmonically confined 1d short range Riesz gas consisting of N particles in equilibrium at finite temperature. The particles interact with each other through a repulsive power-law interaction with an exponent k > 1 which includes the Calogero–Moser model for k = 2. We examine the probability distribution of the number of particles in a finite domain [W,W] called number distribution, denoted by N(W,N) . We analyze the probability distribution of N(W,N) and show that it exhibits a large deviation form for large N characterized by a speed N3k+2k+2 and by a large deviation function (LDF) of the fraction c=N(W,N)/N of the particles inside the domain and W. We show that the density profiles that create the large deviations display interesting shape transitions as one varies c and W. This is manifested by a third-order phase transition exhibited by the LDF that has discontinuous third derivatives. Monte–Carlo simulations based on Metropolis–Hashtings (MH) algorithm show good agreement with our analytical expressions for the corresponding density profiles. We find that the typical fluctuations of N(W,N) , obtained from our field theoretic calculations are Gaussian distributed with a variance that scales as Nνk , with νk=(2k)/(2+k) . We also present some numerical findings on the mean and the variance. Furthermore, we adapt our formalism to study the index distribution (where the domain is semi-infinite (,W]) , linear statistics (the variance), thermodynamic pressure and bulk modulus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
12.50%
发文量
210
审稿时长
1.0 months
期刊介绍: JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged. The journal covers different topics which correspond to the following keyword sections. 1. Quantum statistical physics, condensed matter, integrable systems Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo 2. Classical statistical mechanics, equilibrium and non-equilibrium Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo 3. Disordered systems, classical and quantum Scientific Directors: Eduardo Fradkin and Riccardo Zecchina 4. Interdisciplinary statistical mechanics Scientific Directors: Matteo Marsili and Riccardo Zecchina 5. Biological modelling and information Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信