{"title":"罗宾汉模型中的 1/fα 噪音","authors":"Abha Singh, Rahul Chhimpa, Avinash Chand Yadav","doi":"10.1088/1742-5468/ad72d9","DOIUrl":null,"url":null,"abstract":"We consider the Robin Hood dynamics, a one-dimensional extremal self-organized critical model that describes the low-temperature creep phenomenon. One of the key quantities is the time evolution of the state variable (force noise). To understand the temporal correlations, we compute the power spectra of the local force fluctuations and apply finite-size scaling to get scaling functions and critical exponents. We find a signature of the <inline-formula>\n<tex-math><?CDATA $1/f^{\\alpha}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msup><mml:mi>f</mml:mi><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"jstatad72d9ieqn3.gif\"></inline-graphic></inline-formula> noise for the local force with a nontrivial value of the spectral exponent <inline-formula>\n<tex-math><?CDATA $0 \\lt \\alpha \\lt 2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mi>α</mml:mi><mml:mo><</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"jstatad72d9ieqn4.gif\"></inline-graphic></inline-formula>. We also examine temporal fluctuations in the position of the extremal site and a local activity signal. We present results for different local interaction rules of the model.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"13 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1/fα noise in the Robin Hood model\",\"authors\":\"Abha Singh, Rahul Chhimpa, Avinash Chand Yadav\",\"doi\":\"10.1088/1742-5468/ad72d9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Robin Hood dynamics, a one-dimensional extremal self-organized critical model that describes the low-temperature creep phenomenon. One of the key quantities is the time evolution of the state variable (force noise). To understand the temporal correlations, we compute the power spectra of the local force fluctuations and apply finite-size scaling to get scaling functions and critical exponents. We find a signature of the <inline-formula>\\n<tex-math><?CDATA $1/f^{\\\\alpha}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msup><mml:mi>f</mml:mi><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"jstatad72d9ieqn3.gif\\\"></inline-graphic></inline-formula> noise for the local force with a nontrivial value of the spectral exponent <inline-formula>\\n<tex-math><?CDATA $0 \\\\lt \\\\alpha \\\\lt 2$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mi>α</mml:mi><mml:mo><</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"jstatad72d9ieqn4.gif\\\"></inline-graphic></inline-formula>. We also examine temporal fluctuations in the position of the extremal site and a local activity signal. We present results for different local interaction rules of the model.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad72d9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad72d9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
We consider the Robin Hood dynamics, a one-dimensional extremal self-organized critical model that describes the low-temperature creep phenomenon. One of the key quantities is the time evolution of the state variable (force noise). To understand the temporal correlations, we compute the power spectra of the local force fluctuations and apply finite-size scaling to get scaling functions and critical exponents. We find a signature of the 1/fα noise for the local force with a nontrivial value of the spectral exponent 0<α<2. We also examine temporal fluctuations in the position of the extremal site and a local activity signal. We present results for different local interaction rules of the model.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina