罗宾汉模型中的 1/fα 噪音

IF 2.2 3区 物理与天体物理 Q2 MECHANICS
Abha Singh, Rahul Chhimpa, Avinash Chand Yadav
{"title":"罗宾汉模型中的 1/fα 噪音","authors":"Abha Singh, Rahul Chhimpa, Avinash Chand Yadav","doi":"10.1088/1742-5468/ad72d9","DOIUrl":null,"url":null,"abstract":"We consider the Robin Hood dynamics, a one-dimensional extremal self-organized critical model that describes the low-temperature creep phenomenon. One of the key quantities is the time evolution of the state variable (force noise). To understand the temporal correlations, we compute the power spectra of the local force fluctuations and apply finite-size scaling to get scaling functions and critical exponents. We find a signature of the <inline-formula>\n<tex-math><?CDATA $1/f^{\\alpha}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msup><mml:mi>f</mml:mi><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"jstatad72d9ieqn3.gif\"></inline-graphic></inline-formula> noise for the local force with a nontrivial value of the spectral exponent <inline-formula>\n<tex-math><?CDATA $0 \\lt \\alpha \\lt 2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>0</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>α</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"jstatad72d9ieqn4.gif\"></inline-graphic></inline-formula>. We also examine temporal fluctuations in the position of the extremal site and a local activity signal. We present results for different local interaction rules of the model.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"13 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1/fα noise in the Robin Hood model\",\"authors\":\"Abha Singh, Rahul Chhimpa, Avinash Chand Yadav\",\"doi\":\"10.1088/1742-5468/ad72d9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Robin Hood dynamics, a one-dimensional extremal self-organized critical model that describes the low-temperature creep phenomenon. One of the key quantities is the time evolution of the state variable (force noise). To understand the temporal correlations, we compute the power spectra of the local force fluctuations and apply finite-size scaling to get scaling functions and critical exponents. We find a signature of the <inline-formula>\\n<tex-math><?CDATA $1/f^{\\\\alpha}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msup><mml:mi>f</mml:mi><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"jstatad72d9ieqn3.gif\\\"></inline-graphic></inline-formula> noise for the local force with a nontrivial value of the spectral exponent <inline-formula>\\n<tex-math><?CDATA $0 \\\\lt \\\\alpha \\\\lt 2$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>0</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>α</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"jstatad72d9ieqn4.gif\\\"></inline-graphic></inline-formula>. We also examine temporal fluctuations in the position of the extremal site and a local activity signal. We present results for different local interaction rules of the model.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad72d9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad72d9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是罗宾汉动力学,这是一个描述低温蠕变现象的一维极端自组织临界模型。其中一个关键量是状态变量(力噪声)的时间演化。为了理解时间相关性,我们计算了局部力波动的功率谱,并应用有限大小缩放得到缩放函数和临界指数。我们发现了局部力的 1/fα 噪声特征,其频谱指数为 0<α<2。 我们还研究了极点位置的时间波动和局部活动信号。我们给出了该模型不同局部相互作用规则的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
1/fα noise in the Robin Hood model
We consider the Robin Hood dynamics, a one-dimensional extremal self-organized critical model that describes the low-temperature creep phenomenon. One of the key quantities is the time evolution of the state variable (force noise). To understand the temporal correlations, we compute the power spectra of the local force fluctuations and apply finite-size scaling to get scaling functions and critical exponents. We find a signature of the 1/fα noise for the local force with a nontrivial value of the spectral exponent 0<α<2. We also examine temporal fluctuations in the position of the extremal site and a local activity signal. We present results for different local interaction rules of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
12.50%
发文量
210
审稿时长
1.0 months
期刊介绍: JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged. The journal covers different topics which correspond to the following keyword sections. 1. Quantum statistical physics, condensed matter, integrable systems Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo 2. Classical statistical mechanics, equilibrium and non-equilibrium Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo 3. Disordered systems, classical and quantum Scientific Directors: Eduardo Fradkin and Riccardo Zecchina 4. Interdisciplinary statistical mechanics Scientific Directors: Matteo Marsili and Riccardo Zecchina 5. Biological modelling and information Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信