用于热塑性弹性体拉伸应力不确定性量化的证据神经网络

Alejandro E. Rodríguez-Sánchez
{"title":"用于热塑性弹性体拉伸应力不确定性量化的证据神经网络","authors":"Alejandro E. Rodríguez-Sánchez","doi":"10.1007/s00521-024-10320-0","DOIUrl":null,"url":null,"abstract":"<p>This work presents the use of artificial neural networks (ANNs) with deep evidential regression to model the tensile stress response of a thermoplastic elastomer (TPE) considering uncertainty. Three Gaussian noise scenarios were added to a previous dataset of a TPE to simulate noise in the stress response. The trained ANN models were able to address stress–strain data that were not used for their training or validation, even in the presence of noise. The uncertainty in all tested ANN scenarios comprised, within ± <span>\\(3\\sigma\\)</span>, the noisy data of the TPE stress response. The method was extended to other grades of Hytrel material with ANN architectures that obtained results with a coefficient of determination of about 0.9. These results suggest that shallow neural networks, equipped and trained using evidential output layers and an evidential regression loss, can predict, generalize, and simulate noisy tensile stress responses in TPE materials.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidential neural network for tensile stress uncertainty quantification in thermoplastic elastomers\",\"authors\":\"Alejandro E. Rodríguez-Sánchez\",\"doi\":\"10.1007/s00521-024-10320-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents the use of artificial neural networks (ANNs) with deep evidential regression to model the tensile stress response of a thermoplastic elastomer (TPE) considering uncertainty. Three Gaussian noise scenarios were added to a previous dataset of a TPE to simulate noise in the stress response. The trained ANN models were able to address stress–strain data that were not used for their training or validation, even in the presence of noise. The uncertainty in all tested ANN scenarios comprised, within ± <span>\\\\(3\\\\sigma\\\\)</span>, the noisy data of the TPE stress response. The method was extended to other grades of Hytrel material with ANN architectures that obtained results with a coefficient of determination of about 0.9. These results suggest that shallow neural networks, equipped and trained using evidential output layers and an evidential regression loss, can predict, generalize, and simulate noisy tensile stress responses in TPE materials.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10320-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10320-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了使用人工神经网络(ANN)和深度证据回归来模拟热塑性弹性体(TPE)的拉伸应力响应,并考虑了不确定性。在先前的 TPE 数据集中添加了三种高斯噪声情景,以模拟应力响应中的噪声。即使存在噪声,经过训练的 ANN 模型也能处理未用于训练或验证的应力-应变数据。所有经过测试的 ANN 方案中的不确定性都在 ± (3\sigma\)的范围内,包括 TPE 应力响应的噪声数据。该方法已扩展到其他等级的 Hytrel 材料,其神经网络架构的结果确定系数约为 0.9。这些结果表明,使用证据输出层和证据回归损失装备和训练的浅层神经网络可以预测、概括和模拟 TPE 材料中的噪声拉伸应力响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evidential neural network for tensile stress uncertainty quantification in thermoplastic elastomers

Evidential neural network for tensile stress uncertainty quantification in thermoplastic elastomers

This work presents the use of artificial neural networks (ANNs) with deep evidential regression to model the tensile stress response of a thermoplastic elastomer (TPE) considering uncertainty. Three Gaussian noise scenarios were added to a previous dataset of a TPE to simulate noise in the stress response. The trained ANN models were able to address stress–strain data that were not used for their training or validation, even in the presence of noise. The uncertainty in all tested ANN scenarios comprised, within ± \(3\sigma\), the noisy data of the TPE stress response. The method was extended to other grades of Hytrel material with ANN architectures that obtained results with a coefficient of determination of about 0.9. These results suggest that shallow neural networks, equipped and trained using evidential output layers and an evidential regression loss, can predict, generalize, and simulate noisy tensile stress responses in TPE materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信