通过能带锐化和原子尺度缺陷声子散射增强环保型 CaTiO3 的热电特性

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Quanwei Jiang, Guangshu Li, Xinghui Wang, Huijun Kang, Zongning Chen, Enyu Guo, Tongmin Wang
{"title":"通过能带锐化和原子尺度缺陷声子散射增强环保型 CaTiO3 的热电特性","authors":"Quanwei Jiang, Guangshu Li, Xinghui Wang, Huijun Kang, Zongning Chen, Enyu Guo, Tongmin Wang","doi":"10.1016/j.mtener.2024.101655","DOIUrl":null,"url":null,"abstract":"CaTiO-based compounds have emerged as a promising thermoelectric material, renowned for their environmentally benign, thermally stable, and cost-efficient merits. Non-etheless, the pristine CaTiO manifests inherently low electronic transport properties. Herein, the thermoelectric properties of CaDyTiO ( = 0, 0.05, 0.10, 0.15, 0.20) compounds are systematically investigated. The electrical transport properties are markedly enhanced by synergistic optimization of the carrier concentration, mobility, and density-of-states effective mass. Density functional theory results demonstrate that the conduction band tends to be sharper and that the lighter band participates in carrier transport after Dy doping. The large discrepancy in atomic mass results in considerable mass fluctuations, which give rise to intense phonon scattering. Benefitting from the modulated band structure and reduced thermal conductivity, the highest thermoelectric figure of merit (ZT) of 0.31 is achieved at 1073 K, enhanced by 287.5% in contrast with pristine CaTiO ( = 0.08). The defect and energy band modulation strategies proposed to optimize thermoelectric performance are applicable to other thermoelectric materials. This investigation inspires the exploration of high-performance and eco-friendly high-temperature thermoelectric material.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced thermoelectric properties for eco-friendly CaTiO3 by band sharpening and atomic-scale defect phonon scattering\",\"authors\":\"Quanwei Jiang, Guangshu Li, Xinghui Wang, Huijun Kang, Zongning Chen, Enyu Guo, Tongmin Wang\",\"doi\":\"10.1016/j.mtener.2024.101655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CaTiO-based compounds have emerged as a promising thermoelectric material, renowned for their environmentally benign, thermally stable, and cost-efficient merits. Non-etheless, the pristine CaTiO manifests inherently low electronic transport properties. Herein, the thermoelectric properties of CaDyTiO ( = 0, 0.05, 0.10, 0.15, 0.20) compounds are systematically investigated. The electrical transport properties are markedly enhanced by synergistic optimization of the carrier concentration, mobility, and density-of-states effective mass. Density functional theory results demonstrate that the conduction band tends to be sharper and that the lighter band participates in carrier transport after Dy doping. The large discrepancy in atomic mass results in considerable mass fluctuations, which give rise to intense phonon scattering. Benefitting from the modulated band structure and reduced thermal conductivity, the highest thermoelectric figure of merit (ZT) of 0.31 is achieved at 1073 K, enhanced by 287.5% in contrast with pristine CaTiO ( = 0.08). The defect and energy band modulation strategies proposed to optimize thermoelectric performance are applicable to other thermoelectric materials. This investigation inspires the exploration of high-performance and eco-friendly high-temperature thermoelectric material.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101655\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101655","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化钙基化合物因其对环境无害、热稳定性好和成本效益高而成为一种前景广阔的热电材料。然而,原始的 CaTiO 表现出固有的低电子传输特性。本文系统地研究了 CaDyTiO ( = 0, 0.05, 0.10, 0.15, 0.20) 复合物的热电性能。通过对载流子浓度、迁移率和态密度有效质量的协同优化,电输运特性得到了显著增强。密度泛函理论结果表明,掺杂 Dy 后,传导带趋于尖锐,轻带参与了载流子传输。原子质量的巨大差异导致了相当大的质量波动,从而引发了强烈的声子散射。得益于调制能带结构和热导率的降低,在 1073 K 时,热电功勋值(ZT)达到了 0.31,与原始钙钛矿(= 0.08)相比提高了 287.5%。为优化热电性能而提出的缺陷和能带调制策略适用于其他热电材料。这项研究为探索高性能、环保型高温热电材料提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced thermoelectric properties for eco-friendly CaTiO3 by band sharpening and atomic-scale defect phonon scattering
CaTiO-based compounds have emerged as a promising thermoelectric material, renowned for their environmentally benign, thermally stable, and cost-efficient merits. Non-etheless, the pristine CaTiO manifests inherently low electronic transport properties. Herein, the thermoelectric properties of CaDyTiO ( = 0, 0.05, 0.10, 0.15, 0.20) compounds are systematically investigated. The electrical transport properties are markedly enhanced by synergistic optimization of the carrier concentration, mobility, and density-of-states effective mass. Density functional theory results demonstrate that the conduction band tends to be sharper and that the lighter band participates in carrier transport after Dy doping. The large discrepancy in atomic mass results in considerable mass fluctuations, which give rise to intense phonon scattering. Benefitting from the modulated band structure and reduced thermal conductivity, the highest thermoelectric figure of merit (ZT) of 0.31 is achieved at 1073 K, enhanced by 287.5% in contrast with pristine CaTiO ( = 0.08). The defect and energy band modulation strategies proposed to optimize thermoelectric performance are applicable to other thermoelectric materials. This investigation inspires the exploration of high-performance and eco-friendly high-temperature thermoelectric material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信