Yuqun Zhang, Liqiong Zhu, Rongjun Zhao, Lin Xie, Yong Hua
{"title":"通过操纵过氧化物形态减缓热载流子冷却动力学,实现高性能过氧化物太阳能电池","authors":"Yuqun Zhang, Liqiong Zhu, Rongjun Zhao, Lin Xie, Yong Hua","doi":"10.1016/j.mtener.2024.101651","DOIUrl":null,"url":null,"abstract":"Slowing hot carriers (HCs) cooling of lead halide perovskites exhibits great promise for achieving highly efficient perovskite solar cells (PSCs). However, the effect of the quality of perovskite on PSCs performance has not been well studied. Herein, we fabricated high-quality perovskite films by employing an organic small molecule, tris(pentafluorophenyl)borane (TFB) as an additive material. It was found that the perovskite films with TFB become smoother and pinhole-free morphology with increased grain size and reduced trap-state density. More importantly, ultrafast transient absorption spectroscopy results reveal that the high-quality TFB-doped perovskite films can significantly slow down HCs cooling process compared with pristine perovskite film, which is beneficial for prolonging the lifetime of carriers and reducing the charge carrier recombination in the device. Accordingly, the power conversion efficiency (PCE) of CsFAMA-based PSCs doping with TFB is enhanced to 22.56% from the control device (20.22%). Compared with 21.79% efficiency for the control device, a high PCE of 24.09% is obtained in FA-based PSCs treated with TFB. Besides, the unencapsulated TFB-doped device retains 91% of its initial value after storing for 1900 h under ambient conditions (∼45% humidity). These findings provide some insights for understanding HCs’ dynamics for constructing highly efficient PSCs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slowing hot carriers cooling dynamics via perovskite morphology manipulating enable high-performance perovskite solar cells\",\"authors\":\"Yuqun Zhang, Liqiong Zhu, Rongjun Zhao, Lin Xie, Yong Hua\",\"doi\":\"10.1016/j.mtener.2024.101651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Slowing hot carriers (HCs) cooling of lead halide perovskites exhibits great promise for achieving highly efficient perovskite solar cells (PSCs). However, the effect of the quality of perovskite on PSCs performance has not been well studied. Herein, we fabricated high-quality perovskite films by employing an organic small molecule, tris(pentafluorophenyl)borane (TFB) as an additive material. It was found that the perovskite films with TFB become smoother and pinhole-free morphology with increased grain size and reduced trap-state density. More importantly, ultrafast transient absorption spectroscopy results reveal that the high-quality TFB-doped perovskite films can significantly slow down HCs cooling process compared with pristine perovskite film, which is beneficial for prolonging the lifetime of carriers and reducing the charge carrier recombination in the device. Accordingly, the power conversion efficiency (PCE) of CsFAMA-based PSCs doping with TFB is enhanced to 22.56% from the control device (20.22%). Compared with 21.79% efficiency for the control device, a high PCE of 24.09% is obtained in FA-based PSCs treated with TFB. Besides, the unencapsulated TFB-doped device retains 91% of its initial value after storing for 1900 h under ambient conditions (∼45% humidity). These findings provide some insights for understanding HCs’ dynamics for constructing highly efficient PSCs.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101651\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101651","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Slowing hot carriers cooling dynamics via perovskite morphology manipulating enable high-performance perovskite solar cells
Slowing hot carriers (HCs) cooling of lead halide perovskites exhibits great promise for achieving highly efficient perovskite solar cells (PSCs). However, the effect of the quality of perovskite on PSCs performance has not been well studied. Herein, we fabricated high-quality perovskite films by employing an organic small molecule, tris(pentafluorophenyl)borane (TFB) as an additive material. It was found that the perovskite films with TFB become smoother and pinhole-free morphology with increased grain size and reduced trap-state density. More importantly, ultrafast transient absorption spectroscopy results reveal that the high-quality TFB-doped perovskite films can significantly slow down HCs cooling process compared with pristine perovskite film, which is beneficial for prolonging the lifetime of carriers and reducing the charge carrier recombination in the device. Accordingly, the power conversion efficiency (PCE) of CsFAMA-based PSCs doping with TFB is enhanced to 22.56% from the control device (20.22%). Compared with 21.79% efficiency for the control device, a high PCE of 24.09% is obtained in FA-based PSCs treated with TFB. Besides, the unencapsulated TFB-doped device retains 91% of its initial value after storing for 1900 h under ambient conditions (∼45% humidity). These findings provide some insights for understanding HCs’ dynamics for constructing highly efficient PSCs.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials