Xiaotong Liu, Zheng Han, Siying Zhao, Haoqing Tang, Tian Tian, Qiang Weng, Xiaohuan Liu, Tao Liu
{"title":"带有铜金属活性位点的香港科技大学-1 涂层可实现稳定的锌金属阳极","authors":"Xiaotong Liu, Zheng Han, Siying Zhao, Haoqing Tang, Tian Tian, Qiang Weng, Xiaohuan Liu, Tao Liu","doi":"10.1016/j.mtener.2024.101659","DOIUrl":null,"url":null,"abstract":"Aqueous zinc-ion batteries (AZIBs) are considered to be one of the alternatives for large-scale energy storage devices due to unique advantages. However, the harmful Zn dendrites generation of Zn anodes seriously hinders the development of AZIBs. Herein, Cu(BTC) (HKUST-1) as a compact functional interface layer on the surface of bare Zn foil is shown to improve the reversibility of Zn-plating/stripping process. Interestingly, HKUST-1 possesses high porosity, large number of water molecule vacancies, and Cu active center, which help to enhance the diffusion kinetics of Zn and reduce the surface free energy of Zn electrode. Combining theoretical calculations with experiments, the HKUST-1 can contribute to the desolvation process of Zn[(HO)] and balance Zn concentration, which thus accelerate Zn transfer kinetics, lower interfacial energy, and homogenize ion-distribution. Attributed to these superiorities, the HKUST-1@Zn symmetric cells demonstrate excellent stable plating/stripping for over 250 h under ultra-high current density (20 mA/cm and 20 mAh/cm). Furthermore, a HKUST-1@Zn||MnO full cell exhibits an enhanced long-cycling performance with a discharge capacity of 114 mAh/g after undergoing 500 cycles. All results demonstrate the potential application of HKUST-1 coating in AZIBs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"22 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A HKUST-1 coating with copper metal active site enables stabilized zinc metal anode\",\"authors\":\"Xiaotong Liu, Zheng Han, Siying Zhao, Haoqing Tang, Tian Tian, Qiang Weng, Xiaohuan Liu, Tao Liu\",\"doi\":\"10.1016/j.mtener.2024.101659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc-ion batteries (AZIBs) are considered to be one of the alternatives for large-scale energy storage devices due to unique advantages. However, the harmful Zn dendrites generation of Zn anodes seriously hinders the development of AZIBs. Herein, Cu(BTC) (HKUST-1) as a compact functional interface layer on the surface of bare Zn foil is shown to improve the reversibility of Zn-plating/stripping process. Interestingly, HKUST-1 possesses high porosity, large number of water molecule vacancies, and Cu active center, which help to enhance the diffusion kinetics of Zn and reduce the surface free energy of Zn electrode. Combining theoretical calculations with experiments, the HKUST-1 can contribute to the desolvation process of Zn[(HO)] and balance Zn concentration, which thus accelerate Zn transfer kinetics, lower interfacial energy, and homogenize ion-distribution. Attributed to these superiorities, the HKUST-1@Zn symmetric cells demonstrate excellent stable plating/stripping for over 250 h under ultra-high current density (20 mA/cm and 20 mAh/cm). Furthermore, a HKUST-1@Zn||MnO full cell exhibits an enhanced long-cycling performance with a discharge capacity of 114 mAh/g after undergoing 500 cycles. All results demonstrate the potential application of HKUST-1 coating in AZIBs.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101659\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A HKUST-1 coating with copper metal active site enables stabilized zinc metal anode
Aqueous zinc-ion batteries (AZIBs) are considered to be one of the alternatives for large-scale energy storage devices due to unique advantages. However, the harmful Zn dendrites generation of Zn anodes seriously hinders the development of AZIBs. Herein, Cu(BTC) (HKUST-1) as a compact functional interface layer on the surface of bare Zn foil is shown to improve the reversibility of Zn-plating/stripping process. Interestingly, HKUST-1 possesses high porosity, large number of water molecule vacancies, and Cu active center, which help to enhance the diffusion kinetics of Zn and reduce the surface free energy of Zn electrode. Combining theoretical calculations with experiments, the HKUST-1 can contribute to the desolvation process of Zn[(HO)] and balance Zn concentration, which thus accelerate Zn transfer kinetics, lower interfacial energy, and homogenize ion-distribution. Attributed to these superiorities, the HKUST-1@Zn symmetric cells demonstrate excellent stable plating/stripping for over 250 h under ultra-high current density (20 mA/cm and 20 mAh/cm). Furthermore, a HKUST-1@Zn||MnO full cell exhibits an enhanced long-cycling performance with a discharge capacity of 114 mAh/g after undergoing 500 cycles. All results demonstrate the potential application of HKUST-1 coating in AZIBs.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials