液体傅立叶潜动力网络用于计算心脏病学中基于 GPU 的快速数值模拟

Matteo Salvador, Alison L. Marsden
{"title":"液体傅立叶潜动力网络用于计算心脏病学中基于 GPU 的快速数值模拟","authors":"Matteo Salvador, Alison L. Marsden","doi":"arxiv-2408.09818","DOIUrl":null,"url":null,"abstract":"Scientific Machine Learning (ML) is gaining momentum as a cost-effective\nalternative to physics-based numerical solvers in many engineering\napplications. In fact, scientific ML is currently being used to build accurate\nand efficient surrogate models starting from high-fidelity numerical\nsimulations, effectively encoding the parameterized temporal dynamics\nunderlying Ordinary Differential Equations (ODEs), or even the spatio-temporal\nbehavior underlying Partial Differential Equations (PDEs), in appropriately\ndesigned neural networks. We propose an extension of Latent Dynamics Networks\n(LDNets), namely Liquid Fourier LDNets (LFLDNets), to create parameterized\nspace-time surrogate models for multiscale and multiphysics sets of highly\nnonlinear differential equations on complex geometries. LFLDNets employ a\nneurologically-inspired, sparse, liquid neural network for temporal dynamics,\nrelaxing the requirement of a numerical solver for time advancement and leading\nto superior performance in terms of tunable parameters, accuracy, efficiency\nand learned trajectories with respect to neural ODEs based on feedforward\nfully-connected neural networks. Furthermore, in our implementation of\nLFLDNets, we use a Fourier embedding with a tunable kernel in the\nreconstruction network to learn high-frequency functions better and faster than\nusing space coordinates directly as input. We challenge LFLDNets in the\nframework of computational cardiology and evaluate their capabilities on two\n3-dimensional test cases arising from multiscale cardiac electrophysiology and\ncardiovascular hemodynamics. This paper illustrates the capability to run\nArtificial Intelligence-based numerical simulations on single or multiple GPUs\nin a matter of minutes and represents a significant step forward in the\ndevelopment of physics-informed digital twins.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology\",\"authors\":\"Matteo Salvador, Alison L. Marsden\",\"doi\":\"arxiv-2408.09818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific Machine Learning (ML) is gaining momentum as a cost-effective\\nalternative to physics-based numerical solvers in many engineering\\napplications. In fact, scientific ML is currently being used to build accurate\\nand efficient surrogate models starting from high-fidelity numerical\\nsimulations, effectively encoding the parameterized temporal dynamics\\nunderlying Ordinary Differential Equations (ODEs), or even the spatio-temporal\\nbehavior underlying Partial Differential Equations (PDEs), in appropriately\\ndesigned neural networks. We propose an extension of Latent Dynamics Networks\\n(LDNets), namely Liquid Fourier LDNets (LFLDNets), to create parameterized\\nspace-time surrogate models for multiscale and multiphysics sets of highly\\nnonlinear differential equations on complex geometries. LFLDNets employ a\\nneurologically-inspired, sparse, liquid neural network for temporal dynamics,\\nrelaxing the requirement of a numerical solver for time advancement and leading\\nto superior performance in terms of tunable parameters, accuracy, efficiency\\nand learned trajectories with respect to neural ODEs based on feedforward\\nfully-connected neural networks. Furthermore, in our implementation of\\nLFLDNets, we use a Fourier embedding with a tunable kernel in the\\nreconstruction network to learn high-frequency functions better and faster than\\nusing space coordinates directly as input. We challenge LFLDNets in the\\nframework of computational cardiology and evaluate their capabilities on two\\n3-dimensional test cases arising from multiscale cardiac electrophysiology and\\ncardiovascular hemodynamics. This paper illustrates the capability to run\\nArtificial Intelligence-based numerical simulations on single or multiple GPUs\\nin a matter of minutes and represents a significant step forward in the\\ndevelopment of physics-informed digital twins.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多工程应用中,科学机器学习(ML)作为基于物理的数值求解器的一种经济高效的替代方法,正获得越来越大的发展势头。事实上,科学机器学习目前正被用于从高保真数值模拟出发建立精确高效的代理模型,从而有效地将常微分方程(ODE)或偏微分方程(PDE)的时空动态参数化编码到适当设计的神经网络中。我们提出了潜在动力学网络(LDNets)的扩展,即液体傅立叶 LDNets(LFLDNets),用于创建复杂几何体上多尺度和多物理场高非线性微分方程组的参数化时空代理模型。LFLDNets 采用受神经学启发的稀疏液体神经网络来处理时间动力学,放宽了对时间推进数值求解器的要求,与基于全连接神经网络的神经 ODE 相比,在可调参数、准确性、效率和学习轨迹方面具有更优越的性能。此外,在我们的 LFLDNets 实现中,我们在其构建网络中使用了带有可调内核的傅立叶嵌入,从而比直接将空间坐标作为输入更好、更快地学习高频函数。我们在计算心脏病学的框架内对 LFLDNets 提出了挑战,并在多尺度心脏电生理学和心血管血流动力学的二三维测试案例中对其能力进行了评估。本文展示了在单个或多个 GPU 上运行基于人工智能的数值模拟只需几分钟的能力,标志着在开发物理信息数字双胞胎方面迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology
Scientific Machine Learning (ML) is gaining momentum as a cost-effective alternative to physics-based numerical solvers in many engineering applications. In fact, scientific ML is currently being used to build accurate and efficient surrogate models starting from high-fidelity numerical simulations, effectively encoding the parameterized temporal dynamics underlying Ordinary Differential Equations (ODEs), or even the spatio-temporal behavior underlying Partial Differential Equations (PDEs), in appropriately designed neural networks. We propose an extension of Latent Dynamics Networks (LDNets), namely Liquid Fourier LDNets (LFLDNets), to create parameterized space-time surrogate models for multiscale and multiphysics sets of highly nonlinear differential equations on complex geometries. LFLDNets employ a neurologically-inspired, sparse, liquid neural network for temporal dynamics, relaxing the requirement of a numerical solver for time advancement and leading to superior performance in terms of tunable parameters, accuracy, efficiency and learned trajectories with respect to neural ODEs based on feedforward fully-connected neural networks. Furthermore, in our implementation of LFLDNets, we use a Fourier embedding with a tunable kernel in the reconstruction network to learn high-frequency functions better and faster than using space coordinates directly as input. We challenge LFLDNets in the framework of computational cardiology and evaluate their capabilities on two 3-dimensional test cases arising from multiscale cardiac electrophysiology and cardiovascular hemodynamics. This paper illustrates the capability to run Artificial Intelligence-based numerical simulations on single or multiple GPUs in a matter of minutes and represents a significant step forward in the development of physics-informed digital twins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信