{"title":"SuspAct:实时环境中基于深度学习的新型可疑活动预测","authors":"Sachin Kansal, Akshat Kumar Jain, Moyukh Biswas, Shaurya Bansal, Namay Mahindru, Priya Kansal","doi":"10.1007/s00521-024-10355-3","DOIUrl":null,"url":null,"abstract":"<p>In today’s evolving landscape of video surveillance, our study introduces SuspAct, an innovative ensemble model designed to detect suspicious activities in real time swiftly. Leveraging advanced Long-term Recurrent Convolutional Networks (LRCN), SuspAct represents a significant advancement in intelligent surveillance technology. By combining insights from various LRCN models through the Majority Voting ensemble technique, SuspAct enhances its overall robustness, outperforming traditional surveillance methods. Through rigorous experimentation on large-scale datasets, we demonstrate SuspAct’s superiority in proactive crime prevention, showcasing its potential to revolutionize security protocols and contribute substantially to public safety. Our work addresses the challenges posed by the escalating volume of video data and lays a strong foundation for future advancements in intelligent video surveillance technology.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SuspAct: novel suspicious activity prediction based on deep learning in the real-time environment\",\"authors\":\"Sachin Kansal, Akshat Kumar Jain, Moyukh Biswas, Shaurya Bansal, Namay Mahindru, Priya Kansal\",\"doi\":\"10.1007/s00521-024-10355-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In today’s evolving landscape of video surveillance, our study introduces SuspAct, an innovative ensemble model designed to detect suspicious activities in real time swiftly. Leveraging advanced Long-term Recurrent Convolutional Networks (LRCN), SuspAct represents a significant advancement in intelligent surveillance technology. By combining insights from various LRCN models through the Majority Voting ensemble technique, SuspAct enhances its overall robustness, outperforming traditional surveillance methods. Through rigorous experimentation on large-scale datasets, we demonstrate SuspAct’s superiority in proactive crime prevention, showcasing its potential to revolutionize security protocols and contribute substantially to public safety. Our work addresses the challenges posed by the escalating volume of video data and lays a strong foundation for future advancements in intelligent video surveillance technology.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10355-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10355-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SuspAct: novel suspicious activity prediction based on deep learning in the real-time environment
In today’s evolving landscape of video surveillance, our study introduces SuspAct, an innovative ensemble model designed to detect suspicious activities in real time swiftly. Leveraging advanced Long-term Recurrent Convolutional Networks (LRCN), SuspAct represents a significant advancement in intelligent surveillance technology. By combining insights from various LRCN models through the Majority Voting ensemble technique, SuspAct enhances its overall robustness, outperforming traditional surveillance methods. Through rigorous experimentation on large-scale datasets, we demonstrate SuspAct’s superiority in proactive crime prevention, showcasing its potential to revolutionize security protocols and contribute substantially to public safety. Our work addresses the challenges posed by the escalating volume of video data and lays a strong foundation for future advancements in intelligent video surveillance technology.