机械化学诱导的混合离子/电子导电相,实现无树枝状突起的锂金属阳极

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wen Pan, Shaozhen Huang, Kecheng Long, Xinsheng Liu, Piao Qing, Haoling Liu, Yunke Jin, Yuxin Chen, Huimiao Li, Lin Mei, Zhibin Wu, Libao Chen
{"title":"机械化学诱导的混合离子/电子导电相,实现无树枝状突起的锂金属阳极","authors":"Wen Pan, Shaozhen Huang, Kecheng Long, Xinsheng Liu, Piao Qing, Haoling Liu, Yunke Jin, Yuxin Chen, Huimiao Li, Lin Mei, Zhibin Wu, Libao Chen","doi":"10.1016/j.mtener.2024.101675","DOIUrl":null,"url":null,"abstract":"High-energy-density lithium metal batteries have shown promising applications in drones and electrical vehicles. However, the growth of lithium dendrites and the formation of unstable solid electrolyte interphase (SEI) become the main factors restricting their development. In this study, dendrite-free lithium metal anodes (ZB@Li) were developed with ionic/electronic conductive interface layers by a solvent-free mechanochemical method. By rubbing zinc borate (ZB) powder on lithium foil, a mixed interface layer is formed with the generation of lithium borate phase and the Li–Zn alloy phase. The lithium borate phase provides a low diffusion energy barrier and high ionic conductivity for sufficient potential gradient to induce rapid deposition of ions on the interface layer. The Li–Zn alloy phase owns the lithiophilic characteristic and a high electronic conductivity. The combination of the two phases provides mixed ions/electrons paths with enhanced transport kinetics and realize uniform and planar deposition of lithium. As a result, the ZB@Li symmetrical cell exhibits a prolonged cycling performance of over 4,200 h and the ZB@Li||LFP (LFP= lithium iron phosphate [LiFePO]) full cell shows a long cycle life for more than 500 cycles at 2 C with a high capacity retention rate of 84.6% at a high loading mass of 10 mg/cm.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanochemistry induced mixed ionic/electronic conductive interphase enabling dendrite-free lithium metal anodes\",\"authors\":\"Wen Pan, Shaozhen Huang, Kecheng Long, Xinsheng Liu, Piao Qing, Haoling Liu, Yunke Jin, Yuxin Chen, Huimiao Li, Lin Mei, Zhibin Wu, Libao Chen\",\"doi\":\"10.1016/j.mtener.2024.101675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-energy-density lithium metal batteries have shown promising applications in drones and electrical vehicles. However, the growth of lithium dendrites and the formation of unstable solid electrolyte interphase (SEI) become the main factors restricting their development. In this study, dendrite-free lithium metal anodes (ZB@Li) were developed with ionic/electronic conductive interface layers by a solvent-free mechanochemical method. By rubbing zinc borate (ZB) powder on lithium foil, a mixed interface layer is formed with the generation of lithium borate phase and the Li–Zn alloy phase. The lithium borate phase provides a low diffusion energy barrier and high ionic conductivity for sufficient potential gradient to induce rapid deposition of ions on the interface layer. The Li–Zn alloy phase owns the lithiophilic characteristic and a high electronic conductivity. The combination of the two phases provides mixed ions/electrons paths with enhanced transport kinetics and realize uniform and planar deposition of lithium. As a result, the ZB@Li symmetrical cell exhibits a prolonged cycling performance of over 4,200 h and the ZB@Li||LFP (LFP= lithium iron phosphate [LiFePO]) full cell shows a long cycle life for more than 500 cycles at 2 C with a high capacity retention rate of 84.6% at a high loading mass of 10 mg/cm.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101675\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101675","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高能量密度锂金属电池在无人机和电动汽车中的应用前景广阔。然而,锂枝晶的生长和不稳定固态电解质相(SEI)的形成成为制约其发展的主要因素。本研究采用无溶剂机械化学方法,开发了具有离子/电子导电界面层的无树枝状锂金属阳极(ZB@Li)。通过在锂箔上摩擦硼酸锌(ZB)粉末,形成混合界面层,生成硼酸锂相和锂锌合金相。硼酸锂相具有低扩散能垒和高离子传导性,可提供足够的电位梯度,从而诱导离子在界面层上快速沉积。锂锌合金相具有亲锂特性和高电子传导性。这两种相的结合提供了具有更强传输动力学的离子/电子混合路径,实现了锂的均匀和平面沉积。因此,ZB@Li 对称电池显示出超过 4,200 小时的长期循环性能,而 ZB@Li||LFP(LFP= 磷酸铁锂 [LiFePO])全电池则显示出在 2 C 下超过 500 次循环的长循环寿命,并且在 10 mg/cm 的高负载质量下具有 84.6% 的高容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanochemistry induced mixed ionic/electronic conductive interphase enabling dendrite-free lithium metal anodes
High-energy-density lithium metal batteries have shown promising applications in drones and electrical vehicles. However, the growth of lithium dendrites and the formation of unstable solid electrolyte interphase (SEI) become the main factors restricting their development. In this study, dendrite-free lithium metal anodes (ZB@Li) were developed with ionic/electronic conductive interface layers by a solvent-free mechanochemical method. By rubbing zinc borate (ZB) powder on lithium foil, a mixed interface layer is formed with the generation of lithium borate phase and the Li–Zn alloy phase. The lithium borate phase provides a low diffusion energy barrier and high ionic conductivity for sufficient potential gradient to induce rapid deposition of ions on the interface layer. The Li–Zn alloy phase owns the lithiophilic characteristic and a high electronic conductivity. The combination of the two phases provides mixed ions/electrons paths with enhanced transport kinetics and realize uniform and planar deposition of lithium. As a result, the ZB@Li symmetrical cell exhibits a prolonged cycling performance of over 4,200 h and the ZB@Li||LFP (LFP= lithium iron phosphate [LiFePO]) full cell shows a long cycle life for more than 500 cycles at 2 C with a high capacity retention rate of 84.6% at a high loading mass of 10 mg/cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信