利用隐含量子网络估算不确定性

Yi Hung Lim
{"title":"利用隐含量子网络估算不确定性","authors":"Yi Hung Lim","doi":"arxiv-2408.14525","DOIUrl":null,"url":null,"abstract":"Uncertainty quantification is an important part of many performance critical\napplications. This paper provides a simple alternative to existing approaches\nsuch as ensemble learning and bayesian neural networks. By directly modeling\nthe loss distribution with an Implicit Quantile Network, we get an estimate of\nhow uncertain the model is of its predictions. For experiments with MNIST and\nCIFAR datasets, the mean of the estimated loss distribution is 2x higher for\nincorrect predictions. When data with high estimated uncertainty is removed\nfrom the test dataset, the accuracy of the model goes up as much as 10%. This\nmethod is simple to implement while offering important information to\napplications where the user has to know when the model could be wrong (e.g.\ndeep learning for healthcare).","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Uncertainty with Implicit Quantile Network\",\"authors\":\"Yi Hung Lim\",\"doi\":\"arxiv-2408.14525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty quantification is an important part of many performance critical\\napplications. This paper provides a simple alternative to existing approaches\\nsuch as ensemble learning and bayesian neural networks. By directly modeling\\nthe loss distribution with an Implicit Quantile Network, we get an estimate of\\nhow uncertain the model is of its predictions. For experiments with MNIST and\\nCIFAR datasets, the mean of the estimated loss distribution is 2x higher for\\nincorrect predictions. When data with high estimated uncertainty is removed\\nfrom the test dataset, the accuracy of the model goes up as much as 10%. This\\nmethod is simple to implement while offering important information to\\napplications where the user has to know when the model could be wrong (e.g.\\ndeep learning for healthcare).\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不确定性量化是许多性能关键应用的重要组成部分。本文为现有的集合学习和贝叶斯神经网络等方法提供了一个简单的替代方案。通过使用隐含量子网络直接模拟损失分布,我们可以估算出模型预测的不确定性有多大。在使用 MNIST 和 CIFAR 数据集进行的实验中,对于不正确的预测,估计损失分布的平均值要高出 2 倍。当从测试数据集中移除估计不确定性较高的数据时,模型的准确性会提高 10%。这种方法实现起来很简单,同时还能为用户必须知道模型何时可能出错的应用(如医疗保健领域的深度学习)提供重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Uncertainty with Implicit Quantile Network
Uncertainty quantification is an important part of many performance critical applications. This paper provides a simple alternative to existing approaches such as ensemble learning and bayesian neural networks. By directly modeling the loss distribution with an Implicit Quantile Network, we get an estimate of how uncertain the model is of its predictions. For experiments with MNIST and CIFAR datasets, the mean of the estimated loss distribution is 2x higher for incorrect predictions. When data with high estimated uncertainty is removed from the test dataset, the accuracy of the model goes up as much as 10%. This method is simple to implement while offering important information to applications where the user has to know when the model could be wrong (e.g. deep learning for healthcare).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信