PMSN:用于多尺度时态处理的并行多室尖峰神经元

Xinyi Chen, Jibin Wu, Chenxiang Ma, Yinsong Yan, Yujie Wu, Kay Chen Tan
{"title":"PMSN:用于多尺度时态处理的并行多室尖峰神经元","authors":"Xinyi Chen, Jibin Wu, Chenxiang Ma, Yinsong Yan, Yujie Wu, Kay Chen Tan","doi":"arxiv-2408.14917","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) hold great potential to realize\nbrain-inspired, energy-efficient computational systems. However, current SNNs\nstill fall short in terms of multi-scale temporal processing compared to their\nbiological counterparts. This limitation has resulted in poor performance in\nmany pattern recognition tasks with information that varies across different\ntimescales. To address this issue, we put forward a novel spiking neuron model\ncalled Parallel Multi-compartment Spiking Neuron (PMSN). The PMSN emulates\nbiological neurons by incorporating multiple interacting substructures and\nallows for flexible adjustment of the substructure counts to effectively\nrepresent temporal information across diverse timescales. Additionally, to\naddress the computational burden associated with the increased complexity of\nthe proposed model, we introduce two parallelization techniques that decouple\nthe temporal dependencies of neuronal updates, enabling parallelized training\nacross different time steps. Our experimental results on a wide range of\npattern recognition tasks demonstrate the superiority of PMSN. It outperforms\nother state-of-the-art spiking neuron models in terms of its temporal\nprocessing capacity, training speed, and computation cost. Specifically,\ncompared with the commonly used Leaky Integrate-and-Fire neuron, PMSN offers a\nsimulation acceleration of over 10 $\\times$ and a 30 % improvement in accuracy\non Sequential CIFAR10 dataset, while maintaining comparable computational cost.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PMSN: A Parallel Multi-compartment Spiking Neuron for Multi-scale Temporal Processing\",\"authors\":\"Xinyi Chen, Jibin Wu, Chenxiang Ma, Yinsong Yan, Yujie Wu, Kay Chen Tan\",\"doi\":\"arxiv-2408.14917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking Neural Networks (SNNs) hold great potential to realize\\nbrain-inspired, energy-efficient computational systems. However, current SNNs\\nstill fall short in terms of multi-scale temporal processing compared to their\\nbiological counterparts. This limitation has resulted in poor performance in\\nmany pattern recognition tasks with information that varies across different\\ntimescales. To address this issue, we put forward a novel spiking neuron model\\ncalled Parallel Multi-compartment Spiking Neuron (PMSN). The PMSN emulates\\nbiological neurons by incorporating multiple interacting substructures and\\nallows for flexible adjustment of the substructure counts to effectively\\nrepresent temporal information across diverse timescales. Additionally, to\\naddress the computational burden associated with the increased complexity of\\nthe proposed model, we introduce two parallelization techniques that decouple\\nthe temporal dependencies of neuronal updates, enabling parallelized training\\nacross different time steps. Our experimental results on a wide range of\\npattern recognition tasks demonstrate the superiority of PMSN. It outperforms\\nother state-of-the-art spiking neuron models in terms of its temporal\\nprocessing capacity, training speed, and computation cost. Specifically,\\ncompared with the commonly used Leaky Integrate-and-Fire neuron, PMSN offers a\\nsimulation acceleration of over 10 $\\\\times$ and a 30 % improvement in accuracy\\non Sequential CIFAR10 dataset, while maintaining comparable computational cost.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尖峰神经网络(SNN)在实现由大脑启发的高能效计算系统方面具有巨大潜力。然而,与生物类似系统相比,目前的尖峰神经网络在多尺度时间处理方面仍然存在不足。这一局限性导致在许多模式识别任务中,不同时间尺度的信息表现不佳。为了解决这个问题,我们提出了一种新的尖峰神经元模型,称为并行多室尖峰神经元(PMSN)。该模型通过整合多个相互作用的子结构来模拟生物神经元,并允许灵活调整子结构数量,从而有效地反映不同时间尺度上的时间信息。此外,为了解决所提模型复杂性增加带来的计算负担,我们引入了两种并行化技术,它们能解除神经元更新的时间依赖性,从而实现跨不同时间步的并行化训练。我们在各种模式识别任务上的实验结果证明了 PMSN 的优越性。它在时间处理能力、训练速度和计算成本方面都优于其他最先进的尖峰神经元模型。具体来说,与常用的 "漏积分-火神经元"(Leaky Integrate-and-Fire neuron)相比,PMSN的模拟速度提高了10倍以上,在序列CIFAR10数据集上的准确率提高了30%,同时还保持了相当的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PMSN: A Parallel Multi-compartment Spiking Neuron for Multi-scale Temporal Processing
Spiking Neural Networks (SNNs) hold great potential to realize brain-inspired, energy-efficient computational systems. However, current SNNs still fall short in terms of multi-scale temporal processing compared to their biological counterparts. This limitation has resulted in poor performance in many pattern recognition tasks with information that varies across different timescales. To address this issue, we put forward a novel spiking neuron model called Parallel Multi-compartment Spiking Neuron (PMSN). The PMSN emulates biological neurons by incorporating multiple interacting substructures and allows for flexible adjustment of the substructure counts to effectively represent temporal information across diverse timescales. Additionally, to address the computational burden associated with the increased complexity of the proposed model, we introduce two parallelization techniques that decouple the temporal dependencies of neuronal updates, enabling parallelized training across different time steps. Our experimental results on a wide range of pattern recognition tasks demonstrate the superiority of PMSN. It outperforms other state-of-the-art spiking neuron models in terms of its temporal processing capacity, training speed, and computation cost. Specifically, compared with the commonly used Leaky Integrate-and-Fire neuron, PMSN offers a simulation acceleration of over 10 $\times$ and a 30 % improvement in accuracy on Sequential CIFAR10 dataset, while maintaining comparable computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信