Leopoldo Lusquino Filho, Rafael de Oliveira Werneck, Manuel Castro, Pedro Ribeiro Mendes Júnior, Augusto Lustosa, Marcelo Zampieri, Oscar Linares, Renato Moura, Elayne Morais, Murilo Amaral, Soroor Salavati, Ashish Loomba, Ahmed Esmin, Maiara Gonçalves, Denis José Schiozer, Alexandre Ferreira, Alessandra Davólio, Anderson Rocha
{"title":"混合频率时间序列预测的多模式方法","authors":"Leopoldo Lusquino Filho, Rafael de Oliveira Werneck, Manuel Castro, Pedro Ribeiro Mendes Júnior, Augusto Lustosa, Marcelo Zampieri, Oscar Linares, Renato Moura, Elayne Morais, Murilo Amaral, Soroor Salavati, Ashish Loomba, Ahmed Esmin, Maiara Gonçalves, Denis José Schiozer, Alexandre Ferreira, Alessandra Davólio, Anderson Rocha","doi":"10.1007/s00521-024-10305-z","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a novel multimodal approach for mixed-frequency time series forecasting in the oil industry, enabling the use of high-frequency (HF) data in their original frequency. We specifically address the challenge of integrating HF data streams, such as pressure and temperature measurements, with daily time series without introducing noise. Our approach was compared with existing econometric regression model mixed-data sampling (MIDAS) and with the data-driven models N-HiTS and a GRU-based network, across short-, medium-, and long-term prediction horizons. Additionally, we validated the proposed method on datasets from other domains beyond the oil industry. The experimental results indicate that our multimodal approach significantly improves long-term prediction accuracy.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-modal approach for mixed-frequency time series forecasting\",\"authors\":\"Leopoldo Lusquino Filho, Rafael de Oliveira Werneck, Manuel Castro, Pedro Ribeiro Mendes Júnior, Augusto Lustosa, Marcelo Zampieri, Oscar Linares, Renato Moura, Elayne Morais, Murilo Amaral, Soroor Salavati, Ashish Loomba, Ahmed Esmin, Maiara Gonçalves, Denis José Schiozer, Alexandre Ferreira, Alessandra Davólio, Anderson Rocha\",\"doi\":\"10.1007/s00521-024-10305-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes a novel multimodal approach for mixed-frequency time series forecasting in the oil industry, enabling the use of high-frequency (HF) data in their original frequency. We specifically address the challenge of integrating HF data streams, such as pressure and temperature measurements, with daily time series without introducing noise. Our approach was compared with existing econometric regression model mixed-data sampling (MIDAS) and with the data-driven models N-HiTS and a GRU-based network, across short-, medium-, and long-term prediction horizons. Additionally, we validated the proposed method on datasets from other domains beyond the oil industry. The experimental results indicate that our multimodal approach significantly improves long-term prediction accuracy.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10305-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10305-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-modal approach for mixed-frequency time series forecasting
This study proposes a novel multimodal approach for mixed-frequency time series forecasting in the oil industry, enabling the use of high-frequency (HF) data in their original frequency. We specifically address the challenge of integrating HF data streams, such as pressure and temperature measurements, with daily time series without introducing noise. Our approach was compared with existing econometric regression model mixed-data sampling (MIDAS) and with the data-driven models N-HiTS and a GRU-based network, across short-, medium-, and long-term prediction horizons. Additionally, we validated the proposed method on datasets from other domains beyond the oil industry. The experimental results indicate that our multimodal approach significantly improves long-term prediction accuracy.