Van-Tho Hoang, Won-Ho Choi, Juhyeong Lee, Chanyeop Park, Jin-Hwe Kweon, Byeong-Su Kwak, Young-Woo Nam
{"title":"人工雷击对镍涂层玻璃/环氧泡沫芯复合材料的损害","authors":"Van-Tho Hoang, Won-Ho Choi, Juhyeong Lee, Chanyeop Park, Jin-Hwe Kweon, Byeong-Su Kwak, Young-Woo Nam","doi":"10.1177/10996362241278448","DOIUrl":null,"url":null,"abstract":"In the field of composite materials, many reports have shown that catastrophic structural damage is caused by lightning strikes. In this study, new design concepts were proposed for the lightning-strike protection of nickel-coated glass/epoxy foam-core composites. Instead of using a neat metal mesh, glass fibers were modified with nickel particles via a plating technique to improve their thermal and electrical conductivities. In addition, a thin Invar plate was inserted at the middle of the structure and a foam core was introduced to reduce damage to the structure. Three models with different materials and stacking sequences were used in this study. Severe damage was experimentally observed following artificial lightning at a peak current of approximately 150 kA when considering a waveform A. Furthermore, numerical prediction was performed to identify the damage mechanisms of the structures. Besides the heat flux source, a mechanical source known as the shock wave overpressure was investigated separately as a new factor for dielectric materials. These two sources of lightning were determined as minor reasons for the structural damage. The failure modes were analyzed for further discussion about the failure mechanism in this study.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage of Nickel-coated glass/epoxy foam-core composites induced by artificial lightning strikes\",\"authors\":\"Van-Tho Hoang, Won-Ho Choi, Juhyeong Lee, Chanyeop Park, Jin-Hwe Kweon, Byeong-Su Kwak, Young-Woo Nam\",\"doi\":\"10.1177/10996362241278448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of composite materials, many reports have shown that catastrophic structural damage is caused by lightning strikes. In this study, new design concepts were proposed for the lightning-strike protection of nickel-coated glass/epoxy foam-core composites. Instead of using a neat metal mesh, glass fibers were modified with nickel particles via a plating technique to improve their thermal and electrical conductivities. In addition, a thin Invar plate was inserted at the middle of the structure and a foam core was introduced to reduce damage to the structure. Three models with different materials and stacking sequences were used in this study. Severe damage was experimentally observed following artificial lightning at a peak current of approximately 150 kA when considering a waveform A. Furthermore, numerical prediction was performed to identify the damage mechanisms of the structures. Besides the heat flux source, a mechanical source known as the shock wave overpressure was investigated separately as a new factor for dielectric materials. These two sources of lightning were determined as minor reasons for the structural damage. The failure modes were analyzed for further discussion about the failure mechanism in this study.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362241278448\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362241278448","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Damage of Nickel-coated glass/epoxy foam-core composites induced by artificial lightning strikes
In the field of composite materials, many reports have shown that catastrophic structural damage is caused by lightning strikes. In this study, new design concepts were proposed for the lightning-strike protection of nickel-coated glass/epoxy foam-core composites. Instead of using a neat metal mesh, glass fibers were modified with nickel particles via a plating technique to improve their thermal and electrical conductivities. In addition, a thin Invar plate was inserted at the middle of the structure and a foam core was introduced to reduce damage to the structure. Three models with different materials and stacking sequences were used in this study. Severe damage was experimentally observed following artificial lightning at a peak current of approximately 150 kA when considering a waveform A. Furthermore, numerical prediction was performed to identify the damage mechanisms of the structures. Besides the heat flux source, a mechanical source known as the shock wave overpressure was investigated separately as a new factor for dielectric materials. These two sources of lightning were determined as minor reasons for the structural damage. The failure modes were analyzed for further discussion about the failure mechanism in this study.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).