用二叉方程编码优化神经网络性能和可解释性

Ronald Katende
{"title":"用二叉方程编码优化神经网络性能和可解释性","authors":"Ronald Katende","doi":"arxiv-2409.07310","DOIUrl":null,"url":null,"abstract":"This paper explores the integration of Diophantine equations into neural\nnetwork (NN) architectures to improve model interpretability, stability, and\nefficiency. By encoding and decoding neural network parameters as integer\nsolutions to Diophantine equations, we introduce a novel approach that enhances\nboth the precision and robustness of deep learning models. Our method\nintegrates a custom loss function that enforces Diophantine constraints during\ntraining, leading to better generalization, reduced error bounds, and enhanced\nresilience against adversarial attacks. We demonstrate the efficacy of this\napproach through several tasks, including image classification and natural\nlanguage processing, where improvements in accuracy, convergence, and\nrobustness are observed. This study offers a new perspective on combining\nmathematical theory and machine learning to create more interpretable and\nefficient models.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Neural Network Performance and Interpretability with Diophantine Equation Encoding\",\"authors\":\"Ronald Katende\",\"doi\":\"arxiv-2409.07310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the integration of Diophantine equations into neural\\nnetwork (NN) architectures to improve model interpretability, stability, and\\nefficiency. By encoding and decoding neural network parameters as integer\\nsolutions to Diophantine equations, we introduce a novel approach that enhances\\nboth the precision and robustness of deep learning models. Our method\\nintegrates a custom loss function that enforces Diophantine constraints during\\ntraining, leading to better generalization, reduced error bounds, and enhanced\\nresilience against adversarial attacks. We demonstrate the efficacy of this\\napproach through several tasks, including image classification and natural\\nlanguage processing, where improvements in accuracy, convergence, and\\nrobustness are observed. This study offers a new perspective on combining\\nmathematical theory and machine learning to create more interpretable and\\nefficient models.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了如何将 Diophantine 方程整合到神经网络(NN)架构中,以提高模型的可解释性、稳定性和效率。通过将神经网络参数编码和解码为 Diophantine 方程的整数解,我们引入了一种新颖的方法来提高深度学习模型的精度和鲁棒性。我们的方法集成了一个自定义损失函数,在训练过程中强制执行 Diophantine 约束,从而实现更好的泛化、降低误差边界,并增强对对抗性攻击的复原力。我们通过包括图像分类和自然语言处理在内的几项任务证明了这种方法的有效性,在准确性、收敛性和稳健性方面都有所改进。这项研究为数学理论与机器学习的结合提供了一个新的视角,以创建更可解释、更高效的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Neural Network Performance and Interpretability with Diophantine Equation Encoding
This paper explores the integration of Diophantine equations into neural network (NN) architectures to improve model interpretability, stability, and efficiency. By encoding and decoding neural network parameters as integer solutions to Diophantine equations, we introduce a novel approach that enhances both the precision and robustness of deep learning models. Our method integrates a custom loss function that enforces Diophantine constraints during training, leading to better generalization, reduced error bounds, and enhanced resilience against adversarial attacks. We demonstrate the efficacy of this approach through several tasks, including image classification and natural language processing, where improvements in accuracy, convergence, and robustness are observed. This study offers a new perspective on combining mathematical theory and machine learning to create more interpretable and efficient models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信