用于提高夹层结构在低速冲击下耐久性的改良蜂窝芯材

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL
Omar Al-Osman, Maen Alkhader, Wael Abuzaid
{"title":"用于提高夹层结构在低速冲击下耐久性的改良蜂窝芯材","authors":"Omar Al-Osman, Maen Alkhader, Wael Abuzaid","doi":"10.1177/10996362241279691","DOIUrl":null,"url":null,"abstract":"Honeycomb cores are essential components of composite sandwich structures, and enhancing their ability to withstand out-of-plane loads can improve the resilience of sandwich structures under low-velocity transverse impacts. Therefore, this study computationally investigates the potential for improving the out-of-plane strength of honeycomb cores by superposing periodic sinusoidal perturbations to their cell walls. Such perturbations have been used to enhance the acoustic properties of honeycomb cores. Results demonstrated that introducing these perturbations can improve the strength of honeycomb cores under localized out-of-plane loadings resembling colliding with small objects at low impact speeds. Superposed perturbations increased the out-of-plane strength by a maximum of 28.5 % and eliminated the post-buckling softening behavior. Moreover, they increased the toughness, represented by the area under the force-displacement curve, under localized out-of-plane loads by a maximum of 56.7%. The perturbed honeycomb cores showed more sensitivity to the frequency of the superposed perturbations than their magnitude.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified honeycomb cores for enhancing the durability of sandwich structures under low-velocity impact\",\"authors\":\"Omar Al-Osman, Maen Alkhader, Wael Abuzaid\",\"doi\":\"10.1177/10996362241279691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Honeycomb cores are essential components of composite sandwich structures, and enhancing their ability to withstand out-of-plane loads can improve the resilience of sandwich structures under low-velocity transverse impacts. Therefore, this study computationally investigates the potential for improving the out-of-plane strength of honeycomb cores by superposing periodic sinusoidal perturbations to their cell walls. Such perturbations have been used to enhance the acoustic properties of honeycomb cores. Results demonstrated that introducing these perturbations can improve the strength of honeycomb cores under localized out-of-plane loadings resembling colliding with small objects at low impact speeds. Superposed perturbations increased the out-of-plane strength by a maximum of 28.5 % and eliminated the post-buckling softening behavior. Moreover, they increased the toughness, represented by the area under the force-displacement curve, under localized out-of-plane loads by a maximum of 56.7%. The perturbed honeycomb cores showed more sensitivity to the frequency of the superposed perturbations than their magnitude.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362241279691\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362241279691","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

蜂窝芯是复合材料夹层结构的重要组成部分,增强其承受平面外载荷的能力可以提高夹层结构在低速横向冲击下的弹性。因此,本研究通过计算研究了通过在蜂窝芯细胞壁上叠加周期性正弦扰动来提高蜂窝芯平面外强度的潜力。这种扰动已被用于提高蜂窝芯的声学特性。研究结果表明,引入这些扰动可以提高蜂窝芯在局部平面外载荷(类似于以低冲击速度与小物体碰撞)作用下的强度。叠加扰动最大可将平面外强度提高 28.5%,并消除了屈曲后软化行为。此外,在局部平面外载荷作用下,它们还将韧性(以力-位移曲线下的面积表示)最大提高了 56.7%。扰动蜂窝芯对叠加扰动的频率比对其幅度更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified honeycomb cores for enhancing the durability of sandwich structures under low-velocity impact
Honeycomb cores are essential components of composite sandwich structures, and enhancing their ability to withstand out-of-plane loads can improve the resilience of sandwich structures under low-velocity transverse impacts. Therefore, this study computationally investigates the potential for improving the out-of-plane strength of honeycomb cores by superposing periodic sinusoidal perturbations to their cell walls. Such perturbations have been used to enhance the acoustic properties of honeycomb cores. Results demonstrated that introducing these perturbations can improve the strength of honeycomb cores under localized out-of-plane loadings resembling colliding with small objects at low impact speeds. Superposed perturbations increased the out-of-plane strength by a maximum of 28.5 % and eliminated the post-buckling softening behavior. Moreover, they increased the toughness, represented by the area under the force-displacement curve, under localized out-of-plane loads by a maximum of 56.7%. The perturbed honeycomb cores showed more sensitivity to the frequency of the superposed perturbations than their magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信