通过异构迁移学习对遥感场景进行深度聚类

Isaac Ray, Alexei Skurikhin
{"title":"通过异构迁移学习对遥感场景进行深度聚类","authors":"Isaac Ray, Alexei Skurikhin","doi":"arxiv-2409.03938","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for unsupervised whole-image clustering of a\ntarget dataset of remote sensing scenes with no labels. The method consists of\nthree main steps: (1) finetuning a pretrained deep neural network (DINOv2) on a\nlabelled source remote sensing imagery dataset and using it to extract a\nfeature vector from each image in the target dataset, (2) reducing the\ndimension of these deep features via manifold projection into a low-dimensional\nEuclidean space, and (3) clustering the embedded features using a Bayesian\nnonparametric technique to infer the number and membership of clusters\nsimultaneously. The method takes advantage of heterogeneous transfer learning\nto cluster unseen data with different feature and label distributions. We\ndemonstrate the performance of this approach outperforming state-of-the-art\nzero-shot classification methods on several remote sensing scene classification\ndatasets.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer Learning\",\"authors\":\"Isaac Ray, Alexei Skurikhin\",\"doi\":\"arxiv-2409.03938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for unsupervised whole-image clustering of a\\ntarget dataset of remote sensing scenes with no labels. The method consists of\\nthree main steps: (1) finetuning a pretrained deep neural network (DINOv2) on a\\nlabelled source remote sensing imagery dataset and using it to extract a\\nfeature vector from each image in the target dataset, (2) reducing the\\ndimension of these deep features via manifold projection into a low-dimensional\\nEuclidean space, and (3) clustering the embedded features using a Bayesian\\nnonparametric technique to infer the number and membership of clusters\\nsimultaneously. The method takes advantage of heterogeneous transfer learning\\nto cluster unseen data with different feature and label distributions. We\\ndemonstrate the performance of this approach outperforming state-of-the-art\\nzero-shot classification methods on several remote sensing scene classification\\ndatasets.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种对无标签遥感场景目标数据集进行无监督全图像聚类的方法。该方法包括三个主要步骤:(1) 在有标签的源遥感图像数据集上微调预训练的深度神经网络(DINOv2),并用它从目标数据集中的每幅图像中提取特征向量;(2) 通过流形投影将这些深度特征的维度降低到低维欧几里得空间;(3) 使用贝叶斯非参数技术对嵌入特征进行聚类,以同时推断聚类的数量和成员资格。该方法利用异质迁移学习的优势,对具有不同特征和标签分布的未见数据进行聚类。我们在几个遥感场景分类数据集上演示了这种方法的性能,其性能优于石英零点分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer Learning
This paper proposes a method for unsupervised whole-image clustering of a target dataset of remote sensing scenes with no labels. The method consists of three main steps: (1) finetuning a pretrained deep neural network (DINOv2) on a labelled source remote sensing imagery dataset and using it to extract a feature vector from each image in the target dataset, (2) reducing the dimension of these deep features via manifold projection into a low-dimensional Euclidean space, and (3) clustering the embedded features using a Bayesian nonparametric technique to infer the number and membership of clusters simultaneously. The method takes advantage of heterogeneous transfer learning to cluster unseen data with different feature and label distributions. We demonstrate the performance of this approach outperforming state-of-the-art zero-shot classification methods on several remote sensing scene classification datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信