CUSUM 图表的多目标经济统计设计:NSGA II 方法

Sandeep, Arup Ranjan Mukhopadhyay
{"title":"CUSUM 图表的多目标经济统计设计:NSGA II 方法","authors":"Sandeep, Arup Ranjan Mukhopadhyay","doi":"arxiv-2409.04673","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for the economic statistical design of the\nCumulative Sum (CUSUM) control chart in a multi-objective optimization\nframework. The proposed methodology integrates economic considerations with\nstatistical aspects to optimize the design parameters like the sample size\n($n$), sampling interval ($h$), and decision interval ($H$) of the CUSUM chart.\nThe Non-dominated Sorting Genetic Algorithm II (NSGA II) is employed to solve\nthe multi-objective optimization problem, aiming to minimize both the average\ncost per cycle ($C_E$) and the out-of-control Average Run Length ($ARL_\\delta$)\nsimultaneously. The effectiveness of the proposed approach is demonstrated\nthrough a numerical example by determining the optimized CUSUM chart parameters\nusing NSGA II. Additionally, sensitivity analysis is conducted to assess the\nimpact of variations in input parameters. The corresponding results indicate\nthat the proposed methodology significantly reduces the expected cost per cycle\nby about 43\\% when compared to the findings of the article by M. Lee in the\nyear 2011. A more extensive comparison with respect to both $C_E$ and\n$ARL_\\delta$ has also been provided for justifying the methodology proposed in\nthis article. This highlights the practical relevance and potential of this\nstudy for the right application of the technique of the CUSUM chart for process\ncontrol purposes in industries.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-objective Economic Statistical Design of the CUSUM chart: NSGA II Approach\",\"authors\":\"Sandeep, Arup Ranjan Mukhopadhyay\",\"doi\":\"arxiv-2409.04673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for the economic statistical design of the\\nCumulative Sum (CUSUM) control chart in a multi-objective optimization\\nframework. The proposed methodology integrates economic considerations with\\nstatistical aspects to optimize the design parameters like the sample size\\n($n$), sampling interval ($h$), and decision interval ($H$) of the CUSUM chart.\\nThe Non-dominated Sorting Genetic Algorithm II (NSGA II) is employed to solve\\nthe multi-objective optimization problem, aiming to minimize both the average\\ncost per cycle ($C_E$) and the out-of-control Average Run Length ($ARL_\\\\delta$)\\nsimultaneously. The effectiveness of the proposed approach is demonstrated\\nthrough a numerical example by determining the optimized CUSUM chart parameters\\nusing NSGA II. Additionally, sensitivity analysis is conducted to assess the\\nimpact of variations in input parameters. The corresponding results indicate\\nthat the proposed methodology significantly reduces the expected cost per cycle\\nby about 43\\\\% when compared to the findings of the article by M. Lee in the\\nyear 2011. A more extensive comparison with respect to both $C_E$ and\\n$ARL_\\\\delta$ has also been provided for justifying the methodology proposed in\\nthis article. This highlights the practical relevance and potential of this\\nstudy for the right application of the technique of the CUSUM chart for process\\ncontrol purposes in industries.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在多目标优化框架下对累积总和(CUSUM)控制图进行经济统计设计的方法。本文采用非优势排序遗传算法 II(NSGA II)来解决多目标优化问题,旨在同时最小化每个周期的平均成本($C_E$)和失控平均运行长度($ARL_\delta$)。通过使用 NSGA II 确定优化的 CUSUM 图表参数的数值示例,证明了所提方法的有效性。此外,还进行了敏感性分析,以评估输入参数变化的影响。相应的结果表明,与 M. Lee 在 2011 年发表的文章中得出的结论相比,所提出的方法大大降低了每个周期的预期成本,降幅约为 43%。为了证明本文所提方法的合理性,还对 $C_E$ 和 $ARL_\delta$ 进行了更广泛的比较。这凸显了本研究的实用性和潜力,有助于在工业过程控制中正确应用 CUSUM 图表技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-objective Economic Statistical Design of the CUSUM chart: NSGA II Approach
This paper presents an approach for the economic statistical design of the Cumulative Sum (CUSUM) control chart in a multi-objective optimization framework. The proposed methodology integrates economic considerations with statistical aspects to optimize the design parameters like the sample size ($n$), sampling interval ($h$), and decision interval ($H$) of the CUSUM chart. The Non-dominated Sorting Genetic Algorithm II (NSGA II) is employed to solve the multi-objective optimization problem, aiming to minimize both the average cost per cycle ($C_E$) and the out-of-control Average Run Length ($ARL_\delta$) simultaneously. The effectiveness of the proposed approach is demonstrated through a numerical example by determining the optimized CUSUM chart parameters using NSGA II. Additionally, sensitivity analysis is conducted to assess the impact of variations in input parameters. The corresponding results indicate that the proposed methodology significantly reduces the expected cost per cycle by about 43\% when compared to the findings of the article by M. Lee in the year 2011. A more extensive comparison with respect to both $C_E$ and $ARL_\delta$ has also been provided for justifying the methodology proposed in this article. This highlights the practical relevance and potential of this study for the right application of the technique of the CUSUM chart for process control purposes in industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信