受内在几何启发的从属环形分布:散光数据回归模型的应用

Buddhananda Banerjee, Surojit Biswas
{"title":"受内在几何启发的从属环形分布:散光数据回归模型的应用","authors":"Buddhananda Banerjee, Surojit Biswas","doi":"arxiv-2409.06229","DOIUrl":null,"url":null,"abstract":"This paper introduces a dependent toroidal distribution, to analyze\nastigmatism data following cataract surgery. Rather than utilizing the flat\ntorus, we opt to represent the bivariate angular data on the surface of a\ncurved torus, which naturally offers smooth edge identifiability and\naccommodates a variety of curvatures: positive, negative, and zero. Beginning\nwith the area-uniform toroidal distribution on this curved surface, we develop\na five-parameter-dependent toroidal distribution that harnesses its intrinsic\ngeometry via the area element to model the distribution of two dependent\ncircular random variables. We show that both marginal distributions are\nCardioid, with one of the conditional variables also following a Cardioid\ndistribution. This key feature enables us to propose a circular-circular\nregression model based on conditional expectations derived from circular\nmoments. To address the high rejection rate (approximately 50%) in existing\nacceptance-rejection sampling methods for Cardioid distributions, we introduce\nan exact sampling method based on a probabilistic transformation. Additionally,\nwe generate random samples from the proposed dependent toroidal distribution\nthrough suitable conditioning. This bivariate distribution and the regression\nmodel are applied to analyze astigmatism data arising in the follow-up of one\nand three months due to cataract surgery.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic geometry-inspired dependent toroidal distribution: Application to regression model for astigmatism data\",\"authors\":\"Buddhananda Banerjee, Surojit Biswas\",\"doi\":\"arxiv-2409.06229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a dependent toroidal distribution, to analyze\\nastigmatism data following cataract surgery. Rather than utilizing the flat\\ntorus, we opt to represent the bivariate angular data on the surface of a\\ncurved torus, which naturally offers smooth edge identifiability and\\naccommodates a variety of curvatures: positive, negative, and zero. Beginning\\nwith the area-uniform toroidal distribution on this curved surface, we develop\\na five-parameter-dependent toroidal distribution that harnesses its intrinsic\\ngeometry via the area element to model the distribution of two dependent\\ncircular random variables. We show that both marginal distributions are\\nCardioid, with one of the conditional variables also following a Cardioid\\ndistribution. This key feature enables us to propose a circular-circular\\nregression model based on conditional expectations derived from circular\\nmoments. To address the high rejection rate (approximately 50%) in existing\\nacceptance-rejection sampling methods for Cardioid distributions, we introduce\\nan exact sampling method based on a probabilistic transformation. Additionally,\\nwe generate random samples from the proposed dependent toroidal distribution\\nthrough suitable conditioning. This bivariate distribution and the regression\\nmodel are applied to analyze astigmatism data arising in the follow-up of one\\nand three months due to cataract surgery.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种从属环形分布,用于分析白内障手术后的散光数据。我们没有使用扁平环,而是选择在弧形环表面上表示二维角度数据,这自然提供了平滑的边缘可识别性,并可容纳各种曲率:正、负和零。从这个弯曲表面上的面积均匀环形分布开始,我们建立了一个五参数依赖环形分布,通过面积元素利用其内在几何特性来模拟两个依赖环形随机变量的分布。我们发现这两个边际分布都是心形分布,其中一个条件变量也遵循心形分布。这一关键特征使我们能够提出一个基于圆周率条件期望的圆周回归模型。为了解决现有卡方分布接受-拒绝抽样方法中的高拒绝率(约 50%)问题,我们引入了一种基于概率变换的精确抽样方法。此外,我们还通过适当的调节,从提议的隶属环形分布中生成随机样本。这种双变量分布和回归模型被应用于分析白内障手术后随访 1 个月和 3 个月的散光数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrinsic geometry-inspired dependent toroidal distribution: Application to regression model for astigmatism data
This paper introduces a dependent toroidal distribution, to analyze astigmatism data following cataract surgery. Rather than utilizing the flat torus, we opt to represent the bivariate angular data on the surface of a curved torus, which naturally offers smooth edge identifiability and accommodates a variety of curvatures: positive, negative, and zero. Beginning with the area-uniform toroidal distribution on this curved surface, we develop a five-parameter-dependent toroidal distribution that harnesses its intrinsic geometry via the area element to model the distribution of two dependent circular random variables. We show that both marginal distributions are Cardioid, with one of the conditional variables also following a Cardioid distribution. This key feature enables us to propose a circular-circular regression model based on conditional expectations derived from circular moments. To address the high rejection rate (approximately 50%) in existing acceptance-rejection sampling methods for Cardioid distributions, we introduce an exact sampling method based on a probabilistic transformation. Additionally, we generate random samples from the proposed dependent toroidal distribution through suitable conditioning. This bivariate distribution and the regression model are applied to analyze astigmatism data arising in the follow-up of one and three months due to cataract surgery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信