从卫星图像监测大马普托地区的道路基础设施:面向对象的分类方法

Arianna Burzacchi, Matteo Landrò, Simone Vantini
{"title":"从卫星图像监测大马普托地区的道路基础设施:面向对象的分类方法","authors":"Arianna Burzacchi, Matteo Landrò, Simone Vantini","doi":"arxiv-2409.06406","DOIUrl":null,"url":null,"abstract":"The information about pavement surface type is rarely available in road\nnetwork databases of developing countries although it represents a cornerstone\nof the design of efficient mobility systems. This research develops an\nautomatic classification pipeline for road pavement which makes use of\nsatellite images to recognize road segments as paved or unpaved. The proposed\nmethodology is based on an object-oriented approach, so that each road is\nclassified by looking at the distribution of its pixels in the RGB space. The\nproposed approach is proven to be accurate, inexpensive, and readily replicable\nin other cities.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring road infrastructures from satellite images in Greater Maputo: an object-oriented classification approach\",\"authors\":\"Arianna Burzacchi, Matteo Landrò, Simone Vantini\",\"doi\":\"arxiv-2409.06406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information about pavement surface type is rarely available in road\\nnetwork databases of developing countries although it represents a cornerstone\\nof the design of efficient mobility systems. This research develops an\\nautomatic classification pipeline for road pavement which makes use of\\nsatellite images to recognize road segments as paved or unpaved. The proposed\\nmethodology is based on an object-oriented approach, so that each road is\\nclassified by looking at the distribution of its pixels in the RGB space. The\\nproposed approach is proven to be accurate, inexpensive, and readily replicable\\nin other cities.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管路面类型是设计高效交通系统的基石,但发展中国家的道路网络数据库中却很少有路面类型的信息。本研究开发了道路路面自动分类管道,利用卫星图像识别铺设路面或未铺设路面的路段。所提出的方法基于面向对象的方法,因此每条道路都是通过查看其像素在 RGB 空间中的分布来进行分类的。事实证明,所提出的方法准确、成本低廉,并可在其他城市推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring road infrastructures from satellite images in Greater Maputo: an object-oriented classification approach
The information about pavement surface type is rarely available in road network databases of developing countries although it represents a cornerstone of the design of efficient mobility systems. This research develops an automatic classification pipeline for road pavement which makes use of satellite images to recognize road segments as paved or unpaved. The proposed methodology is based on an object-oriented approach, so that each road is classified by looking at the distribution of its pixels in the RGB space. The proposed approach is proven to be accurate, inexpensive, and readily replicable in other cities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信