二次几何的一些模型理论

Charlotte Kestner, Nicholas Ramsey
{"title":"二次几何的一些模型理论","authors":"Charlotte Kestner, Nicholas Ramsey","doi":"arxiv-2408.10196","DOIUrl":null,"url":null,"abstract":"Orthogonal spaces are vector spaces together with a quadratic form whose\nassociated bilinear form is non-degenerate. Over fields of characteristic two,\nthere are many quadratic forms associated to a given bilinear form and\nquadratic geometries are structures that encode a vector space over a field of\ncharacteristic 2 with a non-degenerate bilinear form together with a space of\nassociated quadratic forms. These structures over finite fields of\ncharacteristic 2 form an important part of the basic geometries that appear in\nthe Lie coordinatizable structures of Cherlin and Hrushovski. We (a) describe\nthe respective model companions of the theory of orthogonal spaces and the\ntheory of quadratic geometries and (b) classify the pseudo-finite completions\nof these theories. We also (c) give a neostability-theoretic classification of\nthe model companions and these pseudo-finite completions. This is a small step\ntowards understanding the analogue of the Cherlin-Hrushovski theory of Lie\ncoordinatizable structures in a setting where the involved fields may be\npseudo-finite.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some model theory of quadratic geometries\",\"authors\":\"Charlotte Kestner, Nicholas Ramsey\",\"doi\":\"arxiv-2408.10196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal spaces are vector spaces together with a quadratic form whose\\nassociated bilinear form is non-degenerate. Over fields of characteristic two,\\nthere are many quadratic forms associated to a given bilinear form and\\nquadratic geometries are structures that encode a vector space over a field of\\ncharacteristic 2 with a non-degenerate bilinear form together with a space of\\nassociated quadratic forms. These structures over finite fields of\\ncharacteristic 2 form an important part of the basic geometries that appear in\\nthe Lie coordinatizable structures of Cherlin and Hrushovski. We (a) describe\\nthe respective model companions of the theory of orthogonal spaces and the\\ntheory of quadratic geometries and (b) classify the pseudo-finite completions\\nof these theories. We also (c) give a neostability-theoretic classification of\\nthe model companions and these pseudo-finite completions. This is a small step\\ntowards understanding the analogue of the Cherlin-Hrushovski theory of Lie\\ncoordinatizable structures in a setting where the involved fields may be\\npseudo-finite.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正交空间是向量空间与二次方形式的组合,其相关的双线性形式是非退化的。在特征 2 的域上,一个给定的双线性方程有许多相关联的二次方程形式,而二次几何是将特征 2 域上的向量空间与一个非退化的双线性方程形式和一个相关联的二次方程形式空间编码在一起的结构。这些特征 2 有限域上的结构构成了谢林和赫鲁晓夫斯基的列可协调结构中出现的基本几何的重要部分。我们(a) 描述了正交空间理论和二次几何理论各自的模型同伴,(b) 对这些理论的伪无限完备性进行了分类。我们还(c)给出了模型同伴和这些伪无限完备的新稳定性理论分类。这是朝着在涉及的场可能是伪无限的情况下理解可协调结构的谢林-赫鲁晓夫斯基理论的一小步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some model theory of quadratic geometries
Orthogonal spaces are vector spaces together with a quadratic form whose associated bilinear form is non-degenerate. Over fields of characteristic two, there are many quadratic forms associated to a given bilinear form and quadratic geometries are structures that encode a vector space over a field of characteristic 2 with a non-degenerate bilinear form together with a space of associated quadratic forms. These structures over finite fields of characteristic 2 form an important part of the basic geometries that appear in the Lie coordinatizable structures of Cherlin and Hrushovski. We (a) describe the respective model companions of the theory of orthogonal spaces and the theory of quadratic geometries and (b) classify the pseudo-finite completions of these theories. We also (c) give a neostability-theoretic classification of the model companions and these pseudo-finite completions. This is a small step towards understanding the analogue of the Cherlin-Hrushovski theory of Lie coordinatizable structures in a setting where the involved fields may be pseudo-finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信