增强型多目标进化算法与强化学习用于灵活作业车间的节能调度

IF 2.8 4区 工程技术 Q2 ENGINEERING, CHEMICAL
Processes Pub Date : 2024-09-13 DOI:10.3390/pr12091976
Jinfa Shi, Wei Liu, Jie Yang
{"title":"增强型多目标进化算法与强化学习用于灵活作业车间的节能调度","authors":"Jinfa Shi, Wei Liu, Jie Yang","doi":"10.3390/pr12091976","DOIUrl":null,"url":null,"abstract":"The study of the flexible job shop scheduling problem (FJSP) is of great importance in the context of green manufacturing. In this paper, with the optimization objectives of minimizing the maximum completion time and the total machine energy consumption, an improved multi-objective evolutionary algorithm with decomposition (MOEA/D) based on reinforcement learning is proposed. Firstly, three initialization strategies are used to generate the initial population in a certain ratio, and four variable neighborhood search strategies are combined to increase the local search capability of the algorithm. Second, a parameter adaptation strategy based on Q-learning is proposed to guide the population to select the optimal parameters to increase diversity. Finally, the performance of the proposed algorithm is analyzed and evaluated by comparing Q-MOEA/D with IMOEA/D and NSGA-II through different sizes of Kacem and BRdata benchmark cases and production examples of automotive engine cooling system manufacturing. The results show that the Q-MOEA/D algorithm outperforms the other two algorithms in solving the energy-efficient scheduling problem for flexible job shops.","PeriodicalId":20597,"journal":{"name":"Processes","volume":"185 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Multi-Objective Evolutionary Algorithm with Reinforcement Learning for Energy-Efficient Scheduling in the Flexible Job Shop\",\"authors\":\"Jinfa Shi, Wei Liu, Jie Yang\",\"doi\":\"10.3390/pr12091976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the flexible job shop scheduling problem (FJSP) is of great importance in the context of green manufacturing. In this paper, with the optimization objectives of minimizing the maximum completion time and the total machine energy consumption, an improved multi-objective evolutionary algorithm with decomposition (MOEA/D) based on reinforcement learning is proposed. Firstly, three initialization strategies are used to generate the initial population in a certain ratio, and four variable neighborhood search strategies are combined to increase the local search capability of the algorithm. Second, a parameter adaptation strategy based on Q-learning is proposed to guide the population to select the optimal parameters to increase diversity. Finally, the performance of the proposed algorithm is analyzed and evaluated by comparing Q-MOEA/D with IMOEA/D and NSGA-II through different sizes of Kacem and BRdata benchmark cases and production examples of automotive engine cooling system manufacturing. The results show that the Q-MOEA/D algorithm outperforms the other two algorithms in solving the energy-efficient scheduling problem for flexible job shops.\",\"PeriodicalId\":20597,\"journal\":{\"name\":\"Processes\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/pr12091976\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091976","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

灵活作业车间调度问题(FJSP)的研究对绿色制造具有重要意义。本文以最大完成时间最小化和机器总能耗最小化为优化目标,提出了一种基于强化学习的改进型多目标分解进化算法(MOEA/D)。首先,采用三种初始化策略按一定比例生成初始种群,并结合四种可变邻域搜索策略提高算法的局部搜索能力。其次,提出了一种基于 Q-learning 的参数适应策略,引导种群选择最优参数以提高多样性。最后,通过不同规模的 Kacem 和 BRdata 基准案例以及汽车发动机冷却系统制造的生产实例,将 Q-MOEA/D 与 IMOEA/D 和 NSGA-II 进行比较,分析和评估了所提算法的性能。结果表明,Q-MOEA/D 算法在解决灵活作业车间的节能调度问题方面优于其他两种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced Multi-Objective Evolutionary Algorithm with Reinforcement Learning for Energy-Efficient Scheduling in the Flexible Job Shop
The study of the flexible job shop scheduling problem (FJSP) is of great importance in the context of green manufacturing. In this paper, with the optimization objectives of minimizing the maximum completion time and the total machine energy consumption, an improved multi-objective evolutionary algorithm with decomposition (MOEA/D) based on reinforcement learning is proposed. Firstly, three initialization strategies are used to generate the initial population in a certain ratio, and four variable neighborhood search strategies are combined to increase the local search capability of the algorithm. Second, a parameter adaptation strategy based on Q-learning is proposed to guide the population to select the optimal parameters to increase diversity. Finally, the performance of the proposed algorithm is analyzed and evaluated by comparing Q-MOEA/D with IMOEA/D and NSGA-II through different sizes of Kacem and BRdata benchmark cases and production examples of automotive engine cooling system manufacturing. The results show that the Q-MOEA/D algorithm outperforms the other two algorithms in solving the energy-efficient scheduling problem for flexible job shops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Processes
Processes Chemical Engineering-Bioengineering
CiteScore
5.10
自引率
11.40%
发文量
2239
审稿时长
14.11 days
期刊介绍: Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信