空间信息能否改善流感预测?

Gabrielle Thivierge, Aaron Rumack, F. William Townes
{"title":"空间信息能否改善流感预测?","authors":"Gabrielle Thivierge, Aaron Rumack, F. William Townes","doi":"arxiv-2408.12722","DOIUrl":null,"url":null,"abstract":"Seasonal influenza forecasting is critical for public health and individual\ndecision making. We investigate whether the inclusion of data about influenza\nactivity in neighboring states can improve point predictions and distribution\nforecasting of influenza-like illness (ILI) in each US state using statistical\nregression models. Using CDC FluView ILI data from 2010-2019, we forecast\nweekly ILI in each US state with quantile, linear, and Poisson autoregressive\nmodels fit using different combinations of ILI data from the target state,\nneighboring states, and US weighted average. Scoring with root mean squared\nerror and weighted interval score indicated that the variants including\nneighbors and/or the US average showed slightly higher accuracy than models fit\nonly using lagged ILI in the target state, on average. Additionally, the\nimprovement in performance when including neighbors was similar to the\nimprovement when including the US average instead, suggesting the proximity of\nthe neighboring states is not the driver of the slight increase in accuracy.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does Spatial Information Improve Influenza Forecasting?\",\"authors\":\"Gabrielle Thivierge, Aaron Rumack, F. William Townes\",\"doi\":\"arxiv-2408.12722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seasonal influenza forecasting is critical for public health and individual\\ndecision making. We investigate whether the inclusion of data about influenza\\nactivity in neighboring states can improve point predictions and distribution\\nforecasting of influenza-like illness (ILI) in each US state using statistical\\nregression models. Using CDC FluView ILI data from 2010-2019, we forecast\\nweekly ILI in each US state with quantile, linear, and Poisson autoregressive\\nmodels fit using different combinations of ILI data from the target state,\\nneighboring states, and US weighted average. Scoring with root mean squared\\nerror and weighted interval score indicated that the variants including\\nneighbors and/or the US average showed slightly higher accuracy than models fit\\nonly using lagged ILI in the target state, on average. Additionally, the\\nimprovement in performance when including neighbors was similar to the\\nimprovement when including the US average instead, suggesting the proximity of\\nthe neighboring states is not the driver of the slight increase in accuracy.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

季节性流感预测对公共卫生和个人决策至关重要。我们利用统计回归模型研究了纳入邻州的流感活动数据是否能改善美国各州流感样疾病(ILI)的点预测和分布预测。利用美国疾病预防控制中心 FluView 2010-2019 年的 ILI 数据,我们使用量化、线性和泊松自回归模型预测了美国各州每周的 ILI,这些模型使用了目标州、邻近州和美国加权平均 ILI 数据的不同组合进行拟合。用均方根误差和加权区间分进行评分表明,包含邻州和/或美国平均值的变体平均准确率略高于仅使用目标州滞后 ILI 拟合的模型。此外,包含邻邦时的性能改进与包含美国平均值时的性能改进相似,这表明邻邦的近似性并不是准确性略有提高的驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does Spatial Information Improve Influenza Forecasting?
Seasonal influenza forecasting is critical for public health and individual decision making. We investigate whether the inclusion of data about influenza activity in neighboring states can improve point predictions and distribution forecasting of influenza-like illness (ILI) in each US state using statistical regression models. Using CDC FluView ILI data from 2010-2019, we forecast weekly ILI in each US state with quantile, linear, and Poisson autoregressive models fit using different combinations of ILI data from the target state, neighboring states, and US weighted average. Scoring with root mean squared error and weighted interval score indicated that the variants including neighbors and/or the US average showed slightly higher accuracy than models fit only using lagged ILI in the target state, on average. Additionally, the improvement in performance when including neighbors was similar to the improvement when including the US average instead, suggesting the proximity of the neighboring states is not the driver of the slight increase in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信