天文学中的贝叶斯函数数据分析

Thomas Loredo, Tamas Budavari, David Kent, David Ruppert
{"title":"天文学中的贝叶斯函数数据分析","authors":"Thomas Loredo, Tamas Budavari, David Kent, David Ruppert","doi":"arxiv-2408.14466","DOIUrl":null,"url":null,"abstract":"Cosmic demographics -- the statistical study of populations of astrophysical\nobjects -- has long relied on *multivariate statistics*, providing methods for\nanalyzing data comprising fixed-length vectors of properties of objects, as\nmight be compiled in a tabular astronomical catalog (say, with sky coordinates,\nand brightness measurements in a fixed number of spectral passbands). But\nbeginning with the emergence of automated digital sky surveys, ca. ~2000,\nastronomers began producing large collections of data with more complex\nstructure: light curves (brightness time series) and spectra (brightness vs.\nwavelength). These comprise what statisticians call *functional data* --\nmeasurements of populations of functions. Upcoming automated sky surveys will\nsoon provide astronomers with a flood of functional data. New methods are\nneeded to accurately and optimally analyze large ensembles of light curves and\nspectra, accumulating information both along and across measured functions.\nFunctional data analysis (FDA) provides tools for statistical modeling of\nfunctional data. Astronomical data presents several challenges for FDA\nmethodology, e.g., sparse, irregular, and asynchronous sampling, and\nheteroscedastic measurement error. Bayesian FDA uses hierarchical Bayesian\nmodels for function populations, and is well suited to addressing these\nchallenges. We provide an overview of astronomical functional data, and of some\nkey Bayesian FDA modeling approaches, including functional mixed effects\nmodels, and stochastic process models. We briefly describe a Bayesian FDA\nframework combining FDA and machine learning methods to build low-dimensional\nparametric models for galaxy spectra.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian functional data analysis in astronomy\",\"authors\":\"Thomas Loredo, Tamas Budavari, David Kent, David Ruppert\",\"doi\":\"arxiv-2408.14466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cosmic demographics -- the statistical study of populations of astrophysical\\nobjects -- has long relied on *multivariate statistics*, providing methods for\\nanalyzing data comprising fixed-length vectors of properties of objects, as\\nmight be compiled in a tabular astronomical catalog (say, with sky coordinates,\\nand brightness measurements in a fixed number of spectral passbands). But\\nbeginning with the emergence of automated digital sky surveys, ca. ~2000,\\nastronomers began producing large collections of data with more complex\\nstructure: light curves (brightness time series) and spectra (brightness vs.\\nwavelength). These comprise what statisticians call *functional data* --\\nmeasurements of populations of functions. Upcoming automated sky surveys will\\nsoon provide astronomers with a flood of functional data. New methods are\\nneeded to accurately and optimally analyze large ensembles of light curves and\\nspectra, accumulating information both along and across measured functions.\\nFunctional data analysis (FDA) provides tools for statistical modeling of\\nfunctional data. Astronomical data presents several challenges for FDA\\nmethodology, e.g., sparse, irregular, and asynchronous sampling, and\\nheteroscedastic measurement error. Bayesian FDA uses hierarchical Bayesian\\nmodels for function populations, and is well suited to addressing these\\nchallenges. We provide an overview of astronomical functional data, and of some\\nkey Bayesian FDA modeling approaches, including functional mixed effects\\nmodels, and stochastic process models. We briefly describe a Bayesian FDA\\nframework combining FDA and machine learning methods to build low-dimensional\\nparametric models for galaxy spectra.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

宇宙人口统计学--对天体物理天体群的统计研究--长期以来一直依赖于*多元统计*,为分析由天体属性的固定长度矢量组成的数据提供方法,这些矢量可能被编入天文目录表中(例如,带有天空坐标和固定数量光谱通带的亮度测量值)。但是,大约从 2000 年开始,随着自动数字巡天的出现,天文学家开始收集大量结构更为复杂的数据:光曲线(亮度时间序列)和光谱(亮度与波长的关系)。这些数据被统计学家称为 "函数数据"--对函数群的测量。即将进行的自动巡天将为天文学家提供大量的函数数据。功能数据分析(FDA)提供了对功能数据进行统计建模的工具。天文数据对 FDA 方法提出了一些挑战,例如稀疏、不规则和不同步采样,以及异速测量误差。贝叶斯 FDA 使用分层贝叶斯模型来计算函数种群,非常适合解决这些挑战。我们概述了天文函数数据和一些重要的贝叶斯 FDA 建模方法,包括函数混合效应模型和随机过程模型。我们简要介绍了贝叶斯 FDA 框架,该框架结合了 FDA 和机器学习方法,用于建立星系光谱的低维参数模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian functional data analysis in astronomy
Cosmic demographics -- the statistical study of populations of astrophysical objects -- has long relied on *multivariate statistics*, providing methods for analyzing data comprising fixed-length vectors of properties of objects, as might be compiled in a tabular astronomical catalog (say, with sky coordinates, and brightness measurements in a fixed number of spectral passbands). But beginning with the emergence of automated digital sky surveys, ca. ~2000, astronomers began producing large collections of data with more complex structure: light curves (brightness time series) and spectra (brightness vs. wavelength). These comprise what statisticians call *functional data* -- measurements of populations of functions. Upcoming automated sky surveys will soon provide astronomers with a flood of functional data. New methods are needed to accurately and optimally analyze large ensembles of light curves and spectra, accumulating information both along and across measured functions. Functional data analysis (FDA) provides tools for statistical modeling of functional data. Astronomical data presents several challenges for FDA methodology, e.g., sparse, irregular, and asynchronous sampling, and heteroscedastic measurement error. Bayesian FDA uses hierarchical Bayesian models for function populations, and is well suited to addressing these challenges. We provide an overview of astronomical functional data, and of some key Bayesian FDA modeling approaches, including functional mixed effects models, and stochastic process models. We briefly describe a Bayesian FDA framework combining FDA and machine learning methods to build low-dimensional parametric models for galaxy spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信