Shima Fasahat, Benedikt Schäfer, Kai Xu, Nadesh Fiuza-Maneiro, Sergio Gómez-Graña, M. Isabel Alonso, Lakshminarayana Polavarapu, Alejandro R. Goñi
{"title":"CsPbBr$_3$ 纳米晶体间隙的温度重正化中不存在反常电子-鹭鸶耦合现象","authors":"Shima Fasahat, Benedikt Schäfer, Kai Xu, Nadesh Fiuza-Maneiro, Sergio Gómez-Graña, M. Isabel Alonso, Lakshminarayana Polavarapu, Alejandro R. Goñi","doi":"arxiv-2409.06374","DOIUrl":null,"url":null,"abstract":"Metal halide perovskites exhibit a fairly linear increase of the bandgap with\nincreasing temperature, when crystallized in a tetragonal or cubic phase. In\ngeneral, both thermal expansion and electron-phonon interaction effects\ncontribute equally to this variation of the gap with temperature. Herein, we\nhave disentangled both contributions in the case of colloidal CsPbBr$_3$\nnanocrystals (NCs) by means of photoluminescence (PL) measurements as a\nfunction of temperature (from 80 K to ambient) and hydrostatic pressure (from\natmospheric to ca. 1 GPa). At around room temperature, CsPbBr$_3$ NCs also show\na linear increase of the bandgap with temperature with a slope similar to that\nof the archetypal methylammonium lead iodide (MAPbI$_3$) perovskite. This is\nsomehow unexpected in view of the recent observations in mixed-cation\nCs$_x$MA$_{1-x}$PbI$_3$ single crystals with low Cs content, for which Cs\nincorporation caused a reduction by a factor of two in the temperature slope of\nthe gap. This effect was ascribed to an anomalous electron-phonon interaction\ninduced by the coupling with vibrational modes admixed with the Cs\ntranslational dynamics inside the cage voids. Thus, no trace of anomalous\ncoupling is found in CsPbBr$_3$ NCs. In fact, we show that the linear\ntemperature renormalization exhibited by the gap of CsPbBr$_3$ NCs is shared\nwith most metal halide perovskites, due to a common bonding/antibonding and\natomic orbital character of the electronic band-edge states. In this way, we\nprovide a deeper understanding of the gap temperature dependence in the general\ncase when the A-site cation dynamics is not involved in the electron-phonon\ninteraction.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absence of Anomalous Electron-Phonon Coupling in the Temperature Renormalization of the Gap of CsPbBr$_3$ Nanocrystals\",\"authors\":\"Shima Fasahat, Benedikt Schäfer, Kai Xu, Nadesh Fiuza-Maneiro, Sergio Gómez-Graña, M. Isabel Alonso, Lakshminarayana Polavarapu, Alejandro R. Goñi\",\"doi\":\"arxiv-2409.06374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal halide perovskites exhibit a fairly linear increase of the bandgap with\\nincreasing temperature, when crystallized in a tetragonal or cubic phase. In\\ngeneral, both thermal expansion and electron-phonon interaction effects\\ncontribute equally to this variation of the gap with temperature. Herein, we\\nhave disentangled both contributions in the case of colloidal CsPbBr$_3$\\nnanocrystals (NCs) by means of photoluminescence (PL) measurements as a\\nfunction of temperature (from 80 K to ambient) and hydrostatic pressure (from\\natmospheric to ca. 1 GPa). At around room temperature, CsPbBr$_3$ NCs also show\\na linear increase of the bandgap with temperature with a slope similar to that\\nof the archetypal methylammonium lead iodide (MAPbI$_3$) perovskite. This is\\nsomehow unexpected in view of the recent observations in mixed-cation\\nCs$_x$MA$_{1-x}$PbI$_3$ single crystals with low Cs content, for which Cs\\nincorporation caused a reduction by a factor of two in the temperature slope of\\nthe gap. This effect was ascribed to an anomalous electron-phonon interaction\\ninduced by the coupling with vibrational modes admixed with the Cs\\ntranslational dynamics inside the cage voids. Thus, no trace of anomalous\\ncoupling is found in CsPbBr$_3$ NCs. In fact, we show that the linear\\ntemperature renormalization exhibited by the gap of CsPbBr$_3$ NCs is shared\\nwith most metal halide perovskites, due to a common bonding/antibonding and\\natomic orbital character of the electronic band-edge states. In this way, we\\nprovide a deeper understanding of the gap temperature dependence in the general\\ncase when the A-site cation dynamics is not involved in the electron-phonon\\ninteraction.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
当结晶为四方或立方晶相时,金属卤化物包光体的带隙在温度升高时呈相当线性的增长。一般来说,热膨胀效应和电子-声子相互作用效应对这种带隙随温度变化的影响是相同的。在这里,我们通过测量光致发光(PL)与温度(从 80 K 到环境温度)和静水压力(从大气压到约 1 GPa)的函数关系,对胶体 CsPbBr$_3$ 纳米晶体(NCs)的情况进行了分析。在室温左右,CsPbBr$_3$ NCs 的带隙也随温度呈线性增长,其斜率与典型的甲基碘化铵铅 (MAPbI$_3$) 包晶的斜率相似。鉴于最近在铯含量较低的混合阳离子 Cs$_x$MA$_{1-x}$PbI$_3$ 单晶中观察到的情况,这多少有些出乎意料。这种效应可归因于笼状空隙内与 C 晶体动态混合的振动模式耦合引起的异常电子-声子相互作用。因此,在 CsPbBr$_3$ NCs 中没有发现异常耦合的痕迹。事实上,我们的研究表明,CsPbBr$_3$ NCs 间隙所表现出的线性温度重正化与大多数金属卤化物包晶石相同,这是由于电子带边态具有共同的成键/反成键和原子轨道特性。这样,当 A 位阳离子动力学不参与电子-声子相互作用时,我们就能更深入地理解一般情况下的间隙温度依赖性。
Absence of Anomalous Electron-Phonon Coupling in the Temperature Renormalization of the Gap of CsPbBr$_3$ Nanocrystals
Metal halide perovskites exhibit a fairly linear increase of the bandgap with
increasing temperature, when crystallized in a tetragonal or cubic phase. In
general, both thermal expansion and electron-phonon interaction effects
contribute equally to this variation of the gap with temperature. Herein, we
have disentangled both contributions in the case of colloidal CsPbBr$_3$
nanocrystals (NCs) by means of photoluminescence (PL) measurements as a
function of temperature (from 80 K to ambient) and hydrostatic pressure (from
atmospheric to ca. 1 GPa). At around room temperature, CsPbBr$_3$ NCs also show
a linear increase of the bandgap with temperature with a slope similar to that
of the archetypal methylammonium lead iodide (MAPbI$_3$) perovskite. This is
somehow unexpected in view of the recent observations in mixed-cation
Cs$_x$MA$_{1-x}$PbI$_3$ single crystals with low Cs content, for which Cs
incorporation caused a reduction by a factor of two in the temperature slope of
the gap. This effect was ascribed to an anomalous electron-phonon interaction
induced by the coupling with vibrational modes admixed with the Cs
translational dynamics inside the cage voids. Thus, no trace of anomalous
coupling is found in CsPbBr$_3$ NCs. In fact, we show that the linear
temperature renormalization exhibited by the gap of CsPbBr$_3$ NCs is shared
with most metal halide perovskites, due to a common bonding/antibonding and
atomic orbital character of the electronic band-edge states. In this way, we
provide a deeper understanding of the gap temperature dependence in the general
case when the A-site cation dynamics is not involved in the electron-phonon
interaction.