氧化金刚石表面亚纳米厚的原生 Sp2 碳

Ricardo Vidrio, Cesar Saucedo, Vincenzo Lordi, Shimon Kolkowitz, Keith G. Ray, Robert J. Hamers, Jennifer T. Choy
{"title":"氧化金刚石表面亚纳米厚的原生 Sp2 碳","authors":"Ricardo Vidrio, Cesar Saucedo, Vincenzo Lordi, Shimon Kolkowitz, Keith G. Ray, Robert J. Hamers, Jennifer T. Choy","doi":"arxiv-2409.06934","DOIUrl":null,"url":null,"abstract":"Oxygen-terminated diamond has a wide breadth of applications, which include\nstabilizing near-surface color centers, semiconductor devices, and biological\nsensors. Despite the vast literature on characterizing functionalization groups\non diamond, the chemical composition on the shallowest portion of the surface\n(< 1 nm) is challenging to probe with conventional techniques like XPS and\nFTIR. In this work, we demonstrate the use of angle-resolved XPS to probe the\nfirst ten nanometers of (100) single-crystalline diamond, showing the changes\nof the oxygen functional groups and the allotropes of carbon with respect to\ndepth. With the use of consistent peak-fitting methods, the peak identities and\nrelative peak binding energies were identified for sp2 carbon, ether, hydroxyl,\ncarbonyl, and C-H groups. For the oxygen-terminated sample, we also quantified\nthe thickness of the sp2 carbon layer situated on top of the bulk sp3 diamond\nbonded carbon to be 0.4 $\\pm$ 0.1 nm, based on the analysis of the Auger\nelectron spectra and D-parameter calculations. These results indicate that the\nmajority of the oxygen is bonded to the sp2 carbon layer on the diamond, and\nnot directly on the sp3 diamond bonded carbon.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-nanometer-thick native sp2 carbon on oxidized diamond surfaces\",\"authors\":\"Ricardo Vidrio, Cesar Saucedo, Vincenzo Lordi, Shimon Kolkowitz, Keith G. Ray, Robert J. Hamers, Jennifer T. Choy\",\"doi\":\"arxiv-2409.06934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxygen-terminated diamond has a wide breadth of applications, which include\\nstabilizing near-surface color centers, semiconductor devices, and biological\\nsensors. Despite the vast literature on characterizing functionalization groups\\non diamond, the chemical composition on the shallowest portion of the surface\\n(< 1 nm) is challenging to probe with conventional techniques like XPS and\\nFTIR. In this work, we demonstrate the use of angle-resolved XPS to probe the\\nfirst ten nanometers of (100) single-crystalline diamond, showing the changes\\nof the oxygen functional groups and the allotropes of carbon with respect to\\ndepth. With the use of consistent peak-fitting methods, the peak identities and\\nrelative peak binding energies were identified for sp2 carbon, ether, hydroxyl,\\ncarbonyl, and C-H groups. For the oxygen-terminated sample, we also quantified\\nthe thickness of the sp2 carbon layer situated on top of the bulk sp3 diamond\\nbonded carbon to be 0.4 $\\\\pm$ 0.1 nm, based on the analysis of the Auger\\nelectron spectra and D-parameter calculations. These results indicate that the\\nmajority of the oxygen is bonded to the sp2 carbon layer on the diamond, and\\nnot directly on the sp3 diamond bonded carbon.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧端金刚石应用广泛,包括稳定近表面色彩中心、半导体器件和生物传感器。尽管有大量文献对金刚石的官能团进行了表征,但用 XPS 和FTIR 等传统技术探测表面最浅部分(< 1 nm)的化学成分仍具有挑战性。在这项工作中,我们展示了使用角度分辨 XPS 探测 (100) 单晶金刚石的前十个纳米,显示了氧官能团和碳的同素异形体随深度的变化。利用一致的峰拟合方法,确定了 sp2 碳、醚、羟基、羰基和 C-H 基团的峰特性和相关峰结合能。对于氧端样品,根据奥氏电子能谱分析和 D 参数计算,我们还确定了位于大块 sp3 金刚石键合碳顶部的 sp2 碳层厚度为 0.4 $\pm$ 0.1 nm。这些结果表明,大部分氧是键合在金刚石上的 sp2 碳层上,而不是直接键合在 sp3 金刚石键合碳上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-nanometer-thick native sp2 carbon on oxidized diamond surfaces
Oxygen-terminated diamond has a wide breadth of applications, which include stabilizing near-surface color centers, semiconductor devices, and biological sensors. Despite the vast literature on characterizing functionalization groups on diamond, the chemical composition on the shallowest portion of the surface (< 1 nm) is challenging to probe with conventional techniques like XPS and FTIR. In this work, we demonstrate the use of angle-resolved XPS to probe the first ten nanometers of (100) single-crystalline diamond, showing the changes of the oxygen functional groups and the allotropes of carbon with respect to depth. With the use of consistent peak-fitting methods, the peak identities and relative peak binding energies were identified for sp2 carbon, ether, hydroxyl, carbonyl, and C-H groups. For the oxygen-terminated sample, we also quantified the thickness of the sp2 carbon layer situated on top of the bulk sp3 diamond bonded carbon to be 0.4 $\pm$ 0.1 nm, based on the analysis of the Auger electron spectra and D-parameter calculations. These results indicate that the majority of the oxygen is bonded to the sp2 carbon layer on the diamond, and not directly on the sp3 diamond bonded carbon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信