检验自我健康调查数据中的差异项目功能 (DIF):通过多层次建模

Dandan Chen Kaptur, Yiqing Liu, Bradley Kaptur, Nicholas Peterman, Jinming Zhang, Justin Kern, Carolyn Anderson
{"title":"检验自我健康调查数据中的差异项目功能 (DIF):通过多层次建模","authors":"Dandan Chen Kaptur, Yiqing Liu, Bradley Kaptur, Nicholas Peterman, Jinming Zhang, Justin Kern, Carolyn Anderson","doi":"arxiv-2408.13702","DOIUrl":null,"url":null,"abstract":"Few health-related constructs or measures have received critical evaluation\nin terms of measurement equivalence, such as self-reported health survey data.\nDifferential item functioning (DIF) analysis is crucial for evaluating\nmeasurement equivalence in self-reported health surveys, which are often\nhierarchical in structure. While traditional DIF methods rely on single-level\nmodels, multilevel models offer a more suitable alternative for analyzing such\ndata. In this article, we highlight the advantages of multilevel modeling in\nDIF analysis and demonstrate how to apply the DIF framework to self-reported\nhealth survey data using multilevel models. For demonstration, we analyze DIF\nassociated with population density on the probability to answer \"Yes\" to a\nsurvey question on depression and reveal that multilevel models achieve better\nfit and account for more variance compared to single-level models. This article\nis expected to increase awareness of the usefulness of multilevel modeling for\nDIF analysis and assist healthcare researchers and practitioners in improving\nthe understanding of self-reported health survey data validity.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining Differential Item Functioning (DIF) in Self-Reported Health Survey Data: Via Multilevel Modeling\",\"authors\":\"Dandan Chen Kaptur, Yiqing Liu, Bradley Kaptur, Nicholas Peterman, Jinming Zhang, Justin Kern, Carolyn Anderson\",\"doi\":\"arxiv-2408.13702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few health-related constructs or measures have received critical evaluation\\nin terms of measurement equivalence, such as self-reported health survey data.\\nDifferential item functioning (DIF) analysis is crucial for evaluating\\nmeasurement equivalence in self-reported health surveys, which are often\\nhierarchical in structure. While traditional DIF methods rely on single-level\\nmodels, multilevel models offer a more suitable alternative for analyzing such\\ndata. In this article, we highlight the advantages of multilevel modeling in\\nDIF analysis and demonstrate how to apply the DIF framework to self-reported\\nhealth survey data using multilevel models. For demonstration, we analyze DIF\\nassociated with population density on the probability to answer \\\"Yes\\\" to a\\nsurvey question on depression and reveal that multilevel models achieve better\\nfit and account for more variance compared to single-level models. This article\\nis expected to increase awareness of the usefulness of multilevel modeling for\\nDIF analysis and assist healthcare researchers and practitioners in improving\\nthe understanding of self-reported health survey data validity.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

差异项目功能(DIF)分析对于评估自我报告健康调查中的测量等效性至关重要,因为自我报告健康调查的结构通常比较层次化。传统的 DIF 方法依赖于单层模型,而多层模型则为分析此类数据提供了更合适的选择。在本文中,我们将强调多层次模型在 DIF 分析中的优势,并演示如何使用多层次模型将 DIF 框架应用于自我报告的健康调查数据。为了进行演示,我们分析了人口密度对抑郁症调查问题回答 "是 "的概率所产生的 DIF,结果显示,与单层次模型相比,多层次模型的拟合效果更好,考虑的方差也更多。本文有望提高人们对多层次模型在 DIF 分析中的实用性的认识,并帮助医疗保健研究人员和从业人员更好地理解自我报告的健康调查数据的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining Differential Item Functioning (DIF) in Self-Reported Health Survey Data: Via Multilevel Modeling
Few health-related constructs or measures have received critical evaluation in terms of measurement equivalence, such as self-reported health survey data. Differential item functioning (DIF) analysis is crucial for evaluating measurement equivalence in self-reported health surveys, which are often hierarchical in structure. While traditional DIF methods rely on single-level models, multilevel models offer a more suitable alternative for analyzing such data. In this article, we highlight the advantages of multilevel modeling in DIF analysis and demonstrate how to apply the DIF framework to self-reported health survey data using multilevel models. For demonstration, we analyze DIF associated with population density on the probability to answer "Yes" to a survey question on depression and reveal that multilevel models achieve better fit and account for more variance compared to single-level models. This article is expected to increase awareness of the usefulness of multilevel modeling for DIF analysis and assist healthcare researchers and practitioners in improving the understanding of self-reported health survey data validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信