莫兰集的中间维数及其可视化

Yali Du, Junjie Miao, Tianrui Wang, Haojie Xu
{"title":"莫兰集的中间维数及其可视化","authors":"Yali Du, Junjie Miao, Tianrui Wang, Haojie Xu","doi":"arxiv-2409.06186","DOIUrl":null,"url":null,"abstract":"Intermediate dimensions are a class of new fractal dimensions which provide a\nspectrum of dimensions interpolating between the Hausdorff and box-counting\ndimensions. In this paper, we study the intermediate dimensions of Moran sets. Moran sets\nmay be regarded as a generalization of self-similar sets generated by using\ndifferent class of similar mappings at each level with unfixed translations,\nand this causes the lack of ergodic properties on Moran set. Therefore, the\nintermediate dimensions do not necessarily exist, and we calculate the upper\nand lower intermediate dimensions of Moran sets. In particular, we obtain a\nsimplified intermediate dimension formula for homogeneous Moran sets. Moreover,\nwe study the visualization of the upper intermediate dimensions for some\nhomogeneous Moran sets, and we show that their upper intermediate dimensions\nare given by Mobius transformations.","PeriodicalId":501444,"journal":{"name":"arXiv - MATH - Metric Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermediate dimensions of Moran sets and their visualization\",\"authors\":\"Yali Du, Junjie Miao, Tianrui Wang, Haojie Xu\",\"doi\":\"arxiv-2409.06186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermediate dimensions are a class of new fractal dimensions which provide a\\nspectrum of dimensions interpolating between the Hausdorff and box-counting\\ndimensions. In this paper, we study the intermediate dimensions of Moran sets. Moran sets\\nmay be regarded as a generalization of self-similar sets generated by using\\ndifferent class of similar mappings at each level with unfixed translations,\\nand this causes the lack of ergodic properties on Moran set. Therefore, the\\nintermediate dimensions do not necessarily exist, and we calculate the upper\\nand lower intermediate dimensions of Moran sets. In particular, we obtain a\\nsimplified intermediate dimension formula for homogeneous Moran sets. Moreover,\\nwe study the visualization of the upper intermediate dimensions for some\\nhomogeneous Moran sets, and we show that their upper intermediate dimensions\\nare given by Mobius transformations.\",\"PeriodicalId\":501444,\"journal\":{\"name\":\"arXiv - MATH - Metric Geometry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Metric Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Metric Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中间维度是一类新的分形维度,它提供了介于豪斯多夫维度和盒计数维度之间的维度谱。本文研究莫兰集的中间维数。莫兰集可以被看作是自相似集的广义化,它是通过在每个层次上使用不同类别的相似映射与不固定的平移而产生的,这导致莫兰集缺乏遍历特性。因此,中间维度并不一定存在,我们计算了莫兰集的上下中间维度。特别是,我们得到了同质莫兰集的简化中间维度公式。此外,我们还研究了一些同质莫兰集的上中间维的可视化,并证明它们的上中间维是由莫比乌斯变换给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intermediate dimensions of Moran sets and their visualization
Intermediate dimensions are a class of new fractal dimensions which provide a spectrum of dimensions interpolating between the Hausdorff and box-counting dimensions. In this paper, we study the intermediate dimensions of Moran sets. Moran sets may be regarded as a generalization of self-similar sets generated by using different class of similar mappings at each level with unfixed translations, and this causes the lack of ergodic properties on Moran set. Therefore, the intermediate dimensions do not necessarily exist, and we calculate the upper and lower intermediate dimensions of Moran sets. In particular, we obtain a simplified intermediate dimension formula for homogeneous Moran sets. Moreover, we study the visualization of the upper intermediate dimensions for some homogeneous Moran sets, and we show that their upper intermediate dimensions are given by Mobius transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信