Carlos Martinez-Ranero, Dubraska Salcedo, Javier Utreras
{"title":"$\\mathbb{F}_p(t)$的无限代数扩展的不可判定性","authors":"Carlos Martinez-Ranero, Dubraska Salcedo, Javier Utreras","doi":"arxiv-2409.01492","DOIUrl":null,"url":null,"abstract":"Building on work of J. Robinson and A. Shlapentokh, we develop a general\nframework to obtain definability and decidability results of large classes of\ninfinite algebraic extensions of $\\mathbb{F}_p(t)$. As an application, we show\nthat for every odd rational prime $p$ there exist infinitely many primes $r$\nsuch that the fields $\\mathbb{F}_{p^a}\\left(t^{r^{-\\infty}}\\right)$ have\nundecidable first-order theory in the language of rings without parameters. Our\nmethod uses character theory to construct families of non-isotrivial elliptic\ncurves whose Mordell-Weil group is finitely generated and of positive rank in\n$\\mathbb{Z}_r$-towers.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undecidability of infinite algebraic extensions of $\\\\mathbb{F}_p(t)$\",\"authors\":\"Carlos Martinez-Ranero, Dubraska Salcedo, Javier Utreras\",\"doi\":\"arxiv-2409.01492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on work of J. Robinson and A. Shlapentokh, we develop a general\\nframework to obtain definability and decidability results of large classes of\\ninfinite algebraic extensions of $\\\\mathbb{F}_p(t)$. As an application, we show\\nthat for every odd rational prime $p$ there exist infinitely many primes $r$\\nsuch that the fields $\\\\mathbb{F}_{p^a}\\\\left(t^{r^{-\\\\infty}}\\\\right)$ have\\nundecidable first-order theory in the language of rings without parameters. Our\\nmethod uses character theory to construct families of non-isotrivial elliptic\\ncurves whose Mordell-Weil group is finitely generated and of positive rank in\\n$\\\\mathbb{Z}_r$-towers.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在 J. Robinson 和 A. Shlapentokh 的工作基础上,我们建立了一个一般框架,以获得 $\mathbb{F}_p(t)$ 的大类无限代数扩展的可定义性和可判定性结果。作为应用,我们证明了对于每个奇有理素数 $p$,存在无限多的素数 $r$,使得域 $\mathbb{F}_{p^a}\left(t^{r^{-\infty}}\right)$ 在无参数环语言中具有可判一阶理论。我们的方法利用特性理论来构造非等离椭圆曲线族,这些族的莫德尔-韦尔群在$mathbb{Z}_r$塔中是有限生成且正秩的。
Undecidability of infinite algebraic extensions of $\mathbb{F}_p(t)$
Building on work of J. Robinson and A. Shlapentokh, we develop a general
framework to obtain definability and decidability results of large classes of
infinite algebraic extensions of $\mathbb{F}_p(t)$. As an application, we show
that for every odd rational prime $p$ there exist infinitely many primes $r$
such that the fields $\mathbb{F}_{p^a}\left(t^{r^{-\infty}}\right)$ have
undecidable first-order theory in the language of rings without parameters. Our
method uses character theory to construct families of non-isotrivial elliptic
curves whose Mordell-Weil group is finitely generated and of positive rank in
$\mathbb{Z}_r$-towers.