每个柯西序列都可以在 $\mathbb R$ 向量空间的 d 最小扩展中定义。

Masato Fujita
{"title":"每个柯西序列都可以在 $\\mathbb R$ 向量空间的 d 最小扩展中定义。","authors":"Masato Fujita","doi":"arxiv-2408.12883","DOIUrl":null,"url":null,"abstract":"Every Cauchy sequence is definable in a d-minimal expansion of the $\\mathbb\nR$-vector space over $\\mathbb R$. In this paper, we prove this assertion and\nthe following more general assertion: Let $\\mathcal R$ be either the ordered\n$\\mathbb R$-vector space structure over $\\mathbb R$ or the ordered group of\nreals. A first-order expansion of $\\mathcal R$ by a countable subset $D$ of\n$\\mathbb R$ and a compact subset $E$ of $\\mathbb R$ of finite Cantor-Bendixson\nrank is d-minimal if $(\\mathcal R,D)$ is locally o-minimal.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Every Cauchy sequence is definable in a d-minimal expansion of the $\\\\mathbb R$-vector space over $\\\\mathbb R$\",\"authors\":\"Masato Fujita\",\"doi\":\"arxiv-2408.12883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every Cauchy sequence is definable in a d-minimal expansion of the $\\\\mathbb\\nR$-vector space over $\\\\mathbb R$. In this paper, we prove this assertion and\\nthe following more general assertion: Let $\\\\mathcal R$ be either the ordered\\n$\\\\mathbb R$-vector space structure over $\\\\mathbb R$ or the ordered group of\\nreals. A first-order expansion of $\\\\mathcal R$ by a countable subset $D$ of\\n$\\\\mathbb R$ and a compact subset $E$ of $\\\\mathbb R$ of finite Cantor-Bendixson\\nrank is d-minimal if $(\\\\mathcal R,D)$ is locally o-minimal.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每一个考奇序列都可以在$\mathbb R$ 上的$\mathbbR$-向量空间的d-最小展开中定义。在本文中,我们将证明这一论断和下面更一般的论断:让 $mathcal R$ 是在 $\mathbb R$ 上的有序$\mathbbR$-向量空间结构,或者是有序的真值群。如果 $(\mathcal R,D)$ 是局部 o 最小的,那么由 $\mathbb R$ 的可数子集 $D$ 和 $\mathbb R$ 的有限 Cantor-Bendixsonrank 的紧凑子集 $E$ 对 $\mathcal R$ 进行的一阶展开就是 d 最小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Every Cauchy sequence is definable in a d-minimal expansion of the $\mathbb R$-vector space over $\mathbb R$
Every Cauchy sequence is definable in a d-minimal expansion of the $\mathbb R$-vector space over $\mathbb R$. In this paper, we prove this assertion and the following more general assertion: Let $\mathcal R$ be either the ordered $\mathbb R$-vector space structure over $\mathbb R$ or the ordered group of reals. A first-order expansion of $\mathcal R$ by a countable subset $D$ of $\mathbb R$ and a compact subset $E$ of $\mathbb R$ of finite Cantor-Bendixson rank is d-minimal if $(\mathcal R,D)$ is locally o-minimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信