来自大红心的最大θ$独立族的适当类

Calliope Ryan-Smith
{"title":"来自大红心的最大θ$独立族的适当类","authors":"Calliope Ryan-Smith","doi":"arxiv-2408.10137","DOIUrl":null,"url":null,"abstract":"While maximal independent families can be constructed from ZFC via Zorn's\nlemma, the presence of a maximal $\\sigma$-independent family already gives an\ninner model with a measurable cardinal, and Kunen has shown that from a\nmeasurable cardinal one can construct a forcing extension in which there is a\nmaximal $\\sigma$-independent family. We extend this technique to construct\nproper classes of maximal $\\theta$-independent families for various uncountable\n$\\theta$. In the first instance, a single $\\theta^+$-strongly compact cardinal\nhas a set-generic extension with a proper class of maximal $\\theta$-independent\nfamilies. In the second, we take a class-generic extension of a model with a\nproper class of measurable cardinals to obtain a proper class of $\\theta$ for\nwhich there is a maximal $\\theta$-independent family.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proper classes of maximal $θ$-independent families from large cardinals\",\"authors\":\"Calliope Ryan-Smith\",\"doi\":\"arxiv-2408.10137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While maximal independent families can be constructed from ZFC via Zorn's\\nlemma, the presence of a maximal $\\\\sigma$-independent family already gives an\\ninner model with a measurable cardinal, and Kunen has shown that from a\\nmeasurable cardinal one can construct a forcing extension in which there is a\\nmaximal $\\\\sigma$-independent family. We extend this technique to construct\\nproper classes of maximal $\\\\theta$-independent families for various uncountable\\n$\\\\theta$. In the first instance, a single $\\\\theta^+$-strongly compact cardinal\\nhas a set-generic extension with a proper class of maximal $\\\\theta$-independent\\nfamilies. In the second, we take a class-generic extension of a model with a\\nproper class of measurable cardinals to obtain a proper class of $\\\\theta$ for\\nwhich there is a maximal $\\\\theta$-independent family.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然最大独立族可以通过佐恩难题(Zorn's slemma)从 ZFC 中构造出来,但最大 $\sigma$-independent 族的存在已经给出了一个具有可度量心数的内含模型,而库宁(Kunen)已经证明,从一个可度量心数可以构造出一个强制扩展,在这个扩展中存在一个最大 $\sigma$-independent 族。我们将这一技术扩展到为各种不可数的$theta$构造与最大$theta$无关的族的适当类别。在第一种情况下,一个单一的$theta^+$-强紧凑红心有一个集合泛延,它有一个最大$theta$-独立族的适当类。在第二种情况中,我们用一类可测红心的适当类对模型进行类属扩展,得到一类适当的 $\theta$,其中有一个最大的 $\theta$-独立族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proper classes of maximal $θ$-independent families from large cardinals
While maximal independent families can be constructed from ZFC via Zorn's lemma, the presence of a maximal $\sigma$-independent family already gives an inner model with a measurable cardinal, and Kunen has shown that from a measurable cardinal one can construct a forcing extension in which there is a maximal $\sigma$-independent family. We extend this technique to construct proper classes of maximal $\theta$-independent families for various uncountable $\theta$. In the first instance, a single $\theta^+$-strongly compact cardinal has a set-generic extension with a proper class of maximal $\theta$-independent families. In the second, we take a class-generic extension of a model with a proper class of measurable cardinals to obtain a proper class of $\theta$ for which there is a maximal $\theta$-independent family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信