澄清序数

Noah Schweber
{"title":"澄清序数","authors":"Noah Schweber","doi":"arxiv-2408.10367","DOIUrl":null,"url":null,"abstract":"We use forcing over admissible sets to show that, for every ordinal $\\alpha$\nin a club $C\\subset\\omega_1$, there are copies of $\\alpha$ such that the\nisomorphism between them is not computable in the join of the complete\n$\\Pi^1_1$ set relative to each copy separately. Assuming $\\mathsf{V=L}$, this\nis close to optimal; on the other hand, assuming large cardinals the same (and\nmore) holds for every projective functional.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clarifying ordinals\",\"authors\":\"Noah Schweber\",\"doi\":\"arxiv-2408.10367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use forcing over admissible sets to show that, for every ordinal $\\\\alpha$\\nin a club $C\\\\subset\\\\omega_1$, there are copies of $\\\\alpha$ such that the\\nisomorphism between them is not computable in the join of the complete\\n$\\\\Pi^1_1$ set relative to each copy separately. Assuming $\\\\mathsf{V=L}$, this\\nis close to optimal; on the other hand, assuming large cardinals the same (and\\nmore) holds for every projective functional.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用对可容许集的强迫来证明,对于在一个俱乐部$C/subset/omega_1$中的每一个序$\alpha$,都有$\alpha$的副本,使得它们之间的同构在相对于每个副本的完整$Pi^1_1$集的连接中是不可计算的。假定 $\mathsf{V=L}$,这接近于最优;另一方面,假定有大红心,则对每一个射影函数都同样成立(而且更成立)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clarifying ordinals
We use forcing over admissible sets to show that, for every ordinal $\alpha$ in a club $C\subset\omega_1$, there are copies of $\alpha$ such that the isomorphism between them is not computable in the join of the complete $\Pi^1_1$ set relative to each copy separately. Assuming $\mathsf{V=L}$, this is close to optimal; on the other hand, assuming large cardinals the same (and more) holds for every projective functional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信