无 CFSG 的小维度有限伪无限群

Ulla KarhumäkiAGL, Frank Olaf WagnerAGL
{"title":"无 CFSG 的小维度有限伪无限群","authors":"Ulla KarhumäkiAGL, Frank Olaf WagnerAGL","doi":"arxiv-2408.11484","DOIUrl":null,"url":null,"abstract":"Any simple pseudofinite group G is known to be isomorphic to a (twisted)\nChevalley group over a pseudofinite field. This celebrated result mostly\nfollows from the work of Wilson in 1995 and heavily relies on the\nclassification of finite simple groups (CFSG). It easily follows that G is\nfinite-dimensional with additive and fine dimension and, in particular, that if\ndim(G)=3 then G is isomorphic to PSL(2,F) for some pseudofinite field F. We\ndescribe pseudofinite finite-dimensional groups when the dimension is fine,\nadditive and \\<4 and, in particular, show that the classification G isomorphic\nto PSL(2,F) is independent from CFSG.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-dimensional pseudofinite groups of small dimension, without CFSG\",\"authors\":\"Ulla KarhumäkiAGL, Frank Olaf WagnerAGL\",\"doi\":\"arxiv-2408.11484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any simple pseudofinite group G is known to be isomorphic to a (twisted)\\nChevalley group over a pseudofinite field. This celebrated result mostly\\nfollows from the work of Wilson in 1995 and heavily relies on the\\nclassification of finite simple groups (CFSG). It easily follows that G is\\nfinite-dimensional with additive and fine dimension and, in particular, that if\\ndim(G)=3 then G is isomorphic to PSL(2,F) for some pseudofinite field F. We\\ndescribe pseudofinite finite-dimensional groups when the dimension is fine,\\nadditive and \\\\<4 and, in particular, show that the classification G isomorphic\\nto PSL(2,F) is independent from CFSG.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,任何单假无限群 G 都与假无限域上的(扭曲)切瓦利群同构。这一著名的结果主要源于威尔逊在 1995 年的工作,并在很大程度上依赖于有限简单群(CFSG)的分类。我们描述了当维度为细维度、加维度和 \<4 时的伪有限维群,并特别证明了 G 与 PSL(2,F) 的同构分类与 CFSG 无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-dimensional pseudofinite groups of small dimension, without CFSG
Any simple pseudofinite group G is known to be isomorphic to a (twisted) Chevalley group over a pseudofinite field. This celebrated result mostly follows from the work of Wilson in 1995 and heavily relies on the classification of finite simple groups (CFSG). It easily follows that G is finite-dimensional with additive and fine dimension and, in particular, that if dim(G)=3 then G is isomorphic to PSL(2,F) for some pseudofinite field F. We describe pseudofinite finite-dimensional groups when the dimension is fine, additive and \<4 and, in particular, show that the classification G isomorphic to PSL(2,F) is independent from CFSG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信