布尔基础、公式大小和模态运算符数量

Christoph Berkholz, Dietrich Kuske, Christian Schwarz
{"title":"布尔基础、公式大小和模态运算符数量","authors":"Christoph Berkholz, Dietrich Kuske, Christian Schwarz","doi":"arxiv-2408.11651","DOIUrl":null,"url":null,"abstract":"Is it possible to write significantly smaller formulae when using Boolean\noperators other than those of the De Morgan basis (and, or, not, and the\nconstants)? For propositional logic, a negative answer was given by Pratt:\nformulae over one set of operators can always be translated into an equivalent\nformula over any other complete set of operators with only polynomial increase\nin size. Surprisingly, for modal logic the picture is different: we show that\nelimination of bi-implication is only possible at the cost of an exponential\nnumber of occurrences of the modal operator $\\lozenge$ and therefore of an\nexponential increase in formula size, i.e., the De Morgan basis and its\nextension by bi-implication differ in succinctness. Moreover, we prove that any\ncomplete set of Boolean operators agrees in succinctness with the De Morgan\nbasis or with its extension by bi-implication. More precisely, these results\nare shown for the modal logic $\\mathrm{T}$ (and therefore for $\\mathrm{K}$). We\ncomplement them showing that the modal logic $\\mathrm{S5}$ behaves as\npropositional logic: the choice of Boolean operators has no significant impact\non the size of formulae.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boolean basis, formula size, and number of modal operators\",\"authors\":\"Christoph Berkholz, Dietrich Kuske, Christian Schwarz\",\"doi\":\"arxiv-2408.11651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Is it possible to write significantly smaller formulae when using Boolean\\noperators other than those of the De Morgan basis (and, or, not, and the\\nconstants)? For propositional logic, a negative answer was given by Pratt:\\nformulae over one set of operators can always be translated into an equivalent\\nformula over any other complete set of operators with only polynomial increase\\nin size. Surprisingly, for modal logic the picture is different: we show that\\nelimination of bi-implication is only possible at the cost of an exponential\\nnumber of occurrences of the modal operator $\\\\lozenge$ and therefore of an\\nexponential increase in formula size, i.e., the De Morgan basis and its\\nextension by bi-implication differ in succinctness. Moreover, we prove that any\\ncomplete set of Boolean operators agrees in succinctness with the De Morgan\\nbasis or with its extension by bi-implication. More precisely, these results\\nare shown for the modal logic $\\\\mathrm{T}$ (and therefore for $\\\\mathrm{K}$). We\\ncomplement them showing that the modal logic $\\\\mathrm{S5}$ behaves as\\npropositional logic: the choice of Boolean operators has no significant impact\\non the size of formulae.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在使用德摩根基础运算符(和、或、非和常数)之外的布尔运算符时,是否有可能写出明显更小的公式?对于命题逻辑,普拉特给出了否定的答案:关于一组运算符的公式总是可以转化为关于任何其他完整运算符组的等价公式,而公式的大小只增加多项式。令人惊讶的是,对于模态逻辑来说,情况却有所不同:我们证明了消除双叠加是可能的,但代价是模态算子 $\lozenge$ 的出现次数呈指数级增长,因此公式的大小也呈指数级增长,也就是说,德摩根基础和它的双叠加扩展在简洁性上是不同的。此外,我们还证明了布尔算子的任何完整集合在简洁性上都与德摩根基础或它的二乘法扩展一致。更准确地说,这些结果是针对模态逻辑 $\mathrm{T}$ (因此也针对 $\mathrm{K}$ )的。我们的补充结果表明,模态逻辑 $\mathrm{S5}$ 的行为与命题逻辑类似:布尔运算符的选择对公式的大小没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boolean basis, formula size, and number of modal operators
Is it possible to write significantly smaller formulae when using Boolean operators other than those of the De Morgan basis (and, or, not, and the constants)? For propositional logic, a negative answer was given by Pratt: formulae over one set of operators can always be translated into an equivalent formula over any other complete set of operators with only polynomial increase in size. Surprisingly, for modal logic the picture is different: we show that elimination of bi-implication is only possible at the cost of an exponential number of occurrences of the modal operator $\lozenge$ and therefore of an exponential increase in formula size, i.e., the De Morgan basis and its extension by bi-implication differ in succinctness. Moreover, we prove that any complete set of Boolean operators agrees in succinctness with the De Morgan basis or with its extension by bi-implication. More precisely, these results are shown for the modal logic $\mathrm{T}$ (and therefore for $\mathrm{K}$). We complement them showing that the modal logic $\mathrm{S5}$ behaves as propositional logic: the choice of Boolean operators has no significant impact on the size of formulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信