苏兹科论文和多值逻辑结构

Sayantan Roy, Sankha S. Basu, Mihir K. Chakraborty
{"title":"苏兹科论文和多值逻辑结构","authors":"Sayantan Roy, Sankha S. Basu, Mihir K. Chakraborty","doi":"arxiv-2408.13769","DOIUrl":null,"url":null,"abstract":"In this article, we try to formulate a definition of ''many-valued logical\nstructure''. For this, we embark on a deeper study of Suszko's Thesis\n($\\mathbf{ST}$) and show that the truth or falsity of $\\mathbf{ST}$ depends, at\nleast, on the precise notion of semantics. We propose two different notions of\nsemantics and three different notions of entailment. The first one helps us\nformulate a precise definition of inferentially many-valued logical structures.\nThe second and the third help us to generalise Suszko Reduction and provide\nadequate bivalent semantics for monotonic and a couple of nonmonotonic logical\nstructures. All these lead us to a closer examination of the played by\nlanguage/metalanguage hierarchy vis-\\'a-vis $\\mathbf{ST}$. We conclude that\nmany-valued logical structures can be obtained if the bivalence of all the\nhigher-order metalogics of the logic under consideration is discarded, building\nformal bridges between the theory of graded consequence and the theory of\nmany-valued logical structures, culminating in generalisations of Suszko's\nThesis.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suszko's Thesis and Many-valued Logical Structures\",\"authors\":\"Sayantan Roy, Sankha S. Basu, Mihir K. Chakraborty\",\"doi\":\"arxiv-2408.13769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we try to formulate a definition of ''many-valued logical\\nstructure''. For this, we embark on a deeper study of Suszko's Thesis\\n($\\\\mathbf{ST}$) and show that the truth or falsity of $\\\\mathbf{ST}$ depends, at\\nleast, on the precise notion of semantics. We propose two different notions of\\nsemantics and three different notions of entailment. The first one helps us\\nformulate a precise definition of inferentially many-valued logical structures.\\nThe second and the third help us to generalise Suszko Reduction and provide\\nadequate bivalent semantics for monotonic and a couple of nonmonotonic logical\\nstructures. All these lead us to a closer examination of the played by\\nlanguage/metalanguage hierarchy vis-\\\\'a-vis $\\\\mathbf{ST}$. We conclude that\\nmany-valued logical structures can be obtained if the bivalence of all the\\nhigher-order metalogics of the logic under consideration is discarded, building\\nformal bridges between the theory of graded consequence and the theory of\\nmany-valued logical structures, culminating in generalisations of Suszko's\\nThesis.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们试图为 "多值逻辑结构 "下一个定义。为此,我们开始深入研究苏斯科论题($\mathbf{ST}$),并证明$\mathbf{ST}$的真假至少取决于精确的语义学概念。我们提出了两种不同的语义概念和三种不同的蕴涵概念。第一个概念有助于我们为推论多值逻辑结构下一个精确的定义。第二个和第三个概念有助于我们对苏斯克还原进行广义化,并为单调逻辑结构和一些非单调逻辑结构提供适当的二价语义。所有这些都使我们对所扮演的语言/金属语言层次结构与$mathbf{ST}$的关系进行了更仔细的考察。我们的结论是,如果摒弃所考虑的逻辑的所有高阶金属语言的二价性,就可以得到多值逻辑结构,从而在分级后果理论与多值逻辑结构理论之间架起了正式的桥梁,并最终概括了苏兹科的论断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suszko's Thesis and Many-valued Logical Structures
In this article, we try to formulate a definition of ''many-valued logical structure''. For this, we embark on a deeper study of Suszko's Thesis ($\mathbf{ST}$) and show that the truth or falsity of $\mathbf{ST}$ depends, at least, on the precise notion of semantics. We propose two different notions of semantics and three different notions of entailment. The first one helps us formulate a precise definition of inferentially many-valued logical structures. The second and the third help us to generalise Suszko Reduction and provide adequate bivalent semantics for monotonic and a couple of nonmonotonic logical structures. All these lead us to a closer examination of the played by language/metalanguage hierarchy vis-\'a-vis $\mathbf{ST}$. We conclude that many-valued logical structures can be obtained if the bivalence of all the higher-order metalogics of the logic under consideration is discarded, building formal bridges between the theory of graded consequence and the theory of many-valued logical structures, culminating in generalisations of Suszko's Thesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信