具有(迭代)构成的魏赫劳赫网格的等式理论

Cécilia Pradic
{"title":"具有(迭代)构成的魏赫劳赫网格的等式理论","authors":"Cécilia Pradic","doi":"arxiv-2408.14999","DOIUrl":null,"url":null,"abstract":"We study the equational theory of the Weihrauch lattice with composition and\niterations, meaning the collection of equations between terms built from\nvariables, the lattice operations $\\sqcup$, $\\sqcap$, the composition operator\n$\\star$ and its iteration $(-)^\\diamond$ , which are true however we substitute\n(slightly extended) Weihrauch degrees for the variables. We characterize them\nusing B\\\"uchi games on finite graphs and give a complete axiomatization that\nderives them. The term signature and the axiomatization are reminiscent of\nKleene algebras, except that we additionally have meets and the lattice\noperations do not fully distributes over composition. The game characterization\nalso implies that it is decidable whether an equation is universally valid. We\ngive some complexity bounds; in particular, the problem is Pspace-hard in\ngeneral and we conjecture that it is solvable in Pspace.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The equational theory of the Weihrauch lattice with (iterated) composition\",\"authors\":\"Cécilia Pradic\",\"doi\":\"arxiv-2408.14999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the equational theory of the Weihrauch lattice with composition and\\niterations, meaning the collection of equations between terms built from\\nvariables, the lattice operations $\\\\sqcup$, $\\\\sqcap$, the composition operator\\n$\\\\star$ and its iteration $(-)^\\\\diamond$ , which are true however we substitute\\n(slightly extended) Weihrauch degrees for the variables. We characterize them\\nusing B\\\\\\\"uchi games on finite graphs and give a complete axiomatization that\\nderives them. The term signature and the axiomatization are reminiscent of\\nKleene algebras, except that we additionally have meets and the lattice\\noperations do not fully distributes over composition. The game characterization\\nalso implies that it is decidable whether an equation is universally valid. We\\ngive some complexity bounds; in particular, the problem is Pspace-hard in\\ngeneral and we conjecture that it is solvable in Pspace.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是具有组成和迭代的魏赫劳赫格的等式理论,即由变量、格运算 $\sqcup$, $\sqcap$, 组成算子$\star$及其迭代$(-)^\diamond$构成的项之间的等式集合。我们用有限图上的渊博博弈来描述它们,并给出了一个完整的公理化来解释它们。术语签名和公理化都让人想起克莱因代数,只是我们另外有了相遇,而且网格操作并不完全分布于组成。博弈表征也意味着方程是否普遍有效是可以判定的。我们给出了一些复杂性边界;特别是,这个问题一般来说是 Pspace-hard(Pspace-hard)的,我们猜想它在 Pspace 中是可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The equational theory of the Weihrauch lattice with (iterated) composition
We study the equational theory of the Weihrauch lattice with composition and iterations, meaning the collection of equations between terms built from variables, the lattice operations $\sqcup$, $\sqcap$, the composition operator $\star$ and its iteration $(-)^\diamond$ , which are true however we substitute (slightly extended) Weihrauch degrees for the variables. We characterize them using B\"uchi games on finite graphs and give a complete axiomatization that derives them. The term signature and the axiomatization are reminiscent of Kleene algebras, except that we additionally have meets and the lattice operations do not fully distributes over composition. The game characterization also implies that it is decidable whether an equation is universally valid. We give some complexity bounds; in particular, the problem is Pspace-hard in general and we conjecture that it is solvable in Pspace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信