{"title":"定义完整的 d 最小结构中的莫尔斯理论","authors":"Masato Fujita, Tomohiro Kawakami","doi":"arxiv-2408.14675","DOIUrl":null,"url":null,"abstract":"Consider a definable complete d-minimal expansion $(F, <, +, \\cdot, 0, 1,\n\\dots,)$ of an oredered field $F$. Let $X$ be a definably compact definably\nnormal definable $C^r$ manifold and $2 \\le r <\\infty$. We prove that the set of\ndefinable Morse functions is open and dense in the set of definable $C^r$\nfunctions on $X$ with respect to the definable $C^2$ topology.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":"392 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morse theory in definably complete d-minimal structures\",\"authors\":\"Masato Fujita, Tomohiro Kawakami\",\"doi\":\"arxiv-2408.14675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a definable complete d-minimal expansion $(F, <, +, \\\\cdot, 0, 1,\\n\\\\dots,)$ of an oredered field $F$. Let $X$ be a definably compact definably\\nnormal definable $C^r$ manifold and $2 \\\\le r <\\\\infty$. We prove that the set of\\ndefinable Morse functions is open and dense in the set of definable $C^r$\\nfunctions on $X$ with respect to the definable $C^2$ topology.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":\"392 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Morse theory in definably complete d-minimal structures
Consider a definable complete d-minimal expansion $(F, <, +, \cdot, 0, 1,
\dots,)$ of an oredered field $F$. Let $X$ be a definably compact definably
normal definable $C^r$ manifold and $2 \le r <\infty$. We prove that the set of
definable Morse functions is open and dense in the set of definable $C^r$
functions on $X$ with respect to the definable $C^2$ topology.