定义完整的 d 最小结构中的莫尔斯理论

Masato Fujita, Tomohiro Kawakami
{"title":"定义完整的 d 最小结构中的莫尔斯理论","authors":"Masato Fujita, Tomohiro Kawakami","doi":"arxiv-2408.14675","DOIUrl":null,"url":null,"abstract":"Consider a definable complete d-minimal expansion $(F, <, +, \\cdot, 0, 1,\n\\dots,)$ of an oredered field $F$. Let $X$ be a definably compact definably\nnormal definable $C^r$ manifold and $2 \\le r <\\infty$. We prove that the set of\ndefinable Morse functions is open and dense in the set of definable $C^r$\nfunctions on $X$ with respect to the definable $C^2$ topology.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":"392 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morse theory in definably complete d-minimal structures\",\"authors\":\"Masato Fujita, Tomohiro Kawakami\",\"doi\":\"arxiv-2408.14675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a definable complete d-minimal expansion $(F, <, +, \\\\cdot, 0, 1,\\n\\\\dots,)$ of an oredered field $F$. Let $X$ be a definably compact definably\\nnormal definable $C^r$ manifold and $2 \\\\le r <\\\\infty$. We prove that the set of\\ndefinable Morse functions is open and dense in the set of definable $C^r$\\nfunctions on $X$ with respect to the definable $C^2$ topology.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":\"392 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个有序域 $F$ 的可定义完整 d 最小展开 $(F, <, +, \cdot, 0, 1,\dots,)$ 。让 $X$ 是一个可定义的紧凑可定义的正常可定义的 $C^r$ 流形,且 $2 \le r <\infty$.我们证明,就可定义的 $C^2$ 拓扑而言,在 $X$ 上可定义的 $C^r$ 函数集合中,可定义的莫尔斯函数集合是开放且密集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morse theory in definably complete d-minimal structures
Consider a definable complete d-minimal expansion $(F, <, +, \cdot, 0, 1, \dots,)$ of an oredered field $F$. Let $X$ be a definably compact definably normal definable $C^r$ manifold and $2 \le r <\infty$. We prove that the set of definable Morse functions is open and dense in the set of definable $C^r$ functions on $X$ with respect to the definable $C^2$ topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信