自主代数微分方程的内部性

Christine Eagles, Léo Jimenez
{"title":"自主代数微分方程的内部性","authors":"Christine Eagles, Léo Jimenez","doi":"arxiv-2409.01863","DOIUrl":null,"url":null,"abstract":"This article is interested in internality to the constants of systems of\nautonomous algebraic ordinary differential equations. Roughly, this means\ndetermining when can all solutions of such a system be written as a rational\nfunction of finitely many fixed solutions (and their derivatives) and finitely\nmany constants. If the system is a single order one equation, the answer was\ngiven in an old article of Rosenlicht. In the present work, we completely\nanswer this question for a large class of systems. As a corollary, we obtain a\nnecessary condition for the generic solution to be Liouvillian. We then apply\nthese results to determine exactly when solutions to Poizat equations (a\nspecial case of Li\\'enard equations) are internal, answering a question of\nFreitag, Jaoui, Marker and Nagloo, and to the classic Lotka-Volterra system,\nshowing that its generic solutions are almost never Liouvillian.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internality of autonomous algebraic differential equations\",\"authors\":\"Christine Eagles, Léo Jimenez\",\"doi\":\"arxiv-2409.01863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is interested in internality to the constants of systems of\\nautonomous algebraic ordinary differential equations. Roughly, this means\\ndetermining when can all solutions of such a system be written as a rational\\nfunction of finitely many fixed solutions (and their derivatives) and finitely\\nmany constants. If the system is a single order one equation, the answer was\\ngiven in an old article of Rosenlicht. In the present work, we completely\\nanswer this question for a large class of systems. As a corollary, we obtain a\\nnecessary condition for the generic solution to be Liouvillian. We then apply\\nthese results to determine exactly when solutions to Poizat equations (a\\nspecial case of Li\\\\'enard equations) are internal, answering a question of\\nFreitag, Jaoui, Marker and Nagloo, and to the classic Lotka-Volterra system,\\nshowing that its generic solutions are almost never Liouvillian.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是自治代数常微分方程系统常数的内部性。粗略地说,这意味着确定这样一个系统的所有解何时可以写成有限多个固定解(及其导数)和有限多个常数的有理函数。如果该系统是单阶一方程,答案已在罗森里希特的一篇旧文中给出。在本研究中,我们完全解答了一大类系统的这一问题。作为推论,我们得到了一般解为 Liouvillian 解的必要条件。然后,我们应用这些结果准确地确定了 Poizat 方程(Li\'enard 方程的特例)的解何时是内部解,回答了 Freitag、Jaoui、Marker 和 Nagloo 的一个问题,并应用于经典的 Lotka-Volterra 系统,表明其泛解几乎从来不是 Liouvillian 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internality of autonomous algebraic differential equations
This article is interested in internality to the constants of systems of autonomous algebraic ordinary differential equations. Roughly, this means determining when can all solutions of such a system be written as a rational function of finitely many fixed solutions (and their derivatives) and finitely many constants. If the system is a single order one equation, the answer was given in an old article of Rosenlicht. In the present work, we completely answer this question for a large class of systems. As a corollary, we obtain a necessary condition for the generic solution to be Liouvillian. We then apply these results to determine exactly when solutions to Poizat equations (a special case of Li\'enard equations) are internal, answering a question of Freitag, Jaoui, Marker and Nagloo, and to the classic Lotka-Volterra system, showing that its generic solutions are almost never Liouvillian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信