强还原性与集合论

Noah Schweber
{"title":"强还原性与集合论","authors":"Noah Schweber","doi":"arxiv-2408.17393","DOIUrl":null,"url":null,"abstract":"We study Medvedev reducibility in the context of set theory -- specifically,\nforcing and large cardinal hypotheses. Answering a question of Hamkins and Li\n\\cite{HaLi}, we show that the Medvedev degrees of countable ordinals are far\nfrom linearly ordered in multiple ways, our main result here being that there\nis a club of ordinals which is an antichain with respect to Medvedev\nreducibility. We then generalize these results to arbitrary\n``reasonably-definable\" reducibilities, under appropriate set-theoretic\nhypotheses. We then turn from ordinals to general structures. We show that some of the\nresults above yield characterizations of counterexamples to Vaught's\nconjecture; another applies to all situations, assigning an ordinal to any\nreasonable class of structures and ``measure\" on that class. We end by\ndiscussing some directions for future research.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong reducibilities and set theory\",\"authors\":\"Noah Schweber\",\"doi\":\"arxiv-2408.17393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Medvedev reducibility in the context of set theory -- specifically,\\nforcing and large cardinal hypotheses. Answering a question of Hamkins and Li\\n\\\\cite{HaLi}, we show that the Medvedev degrees of countable ordinals are far\\nfrom linearly ordered in multiple ways, our main result here being that there\\nis a club of ordinals which is an antichain with respect to Medvedev\\nreducibility. We then generalize these results to arbitrary\\n``reasonably-definable\\\" reducibilities, under appropriate set-theoretic\\nhypotheses. We then turn from ordinals to general structures. We show that some of the\\nresults above yield characterizations of counterexamples to Vaught's\\nconjecture; another applies to all situations, assigning an ordinal to any\\nreasonable class of structures and ``measure\\\" on that class. We end by\\ndiscussing some directions for future research.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在集合论的背景下研究梅德韦杰夫可还原性--特别是强迫假设和大贲门假设。我们回答了哈姆金斯和李的一个问题,证明了可数序元的梅德韦杰夫度在多个方面远不是线性有序的,我们在此的主要结果是,有一个序元俱乐部在梅德韦杰夫可还原性方面是一个反链。然后,在适当的集合论假设下,我们将这些结果推广到任意的 "合理定义的 "还原性。然后,我们从序数转向一般结构。我们证明,上述一些结果产生了沃特猜想反例的特征;另一个结果则适用于所有情况,即给任何合理的结构类分配一个序数,并对该类进行 "度量"。最后,我们讨论了未来研究的一些方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong reducibilities and set theory
We study Medvedev reducibility in the context of set theory -- specifically, forcing and large cardinal hypotheses. Answering a question of Hamkins and Li \cite{HaLi}, we show that the Medvedev degrees of countable ordinals are far from linearly ordered in multiple ways, our main result here being that there is a club of ordinals which is an antichain with respect to Medvedev reducibility. We then generalize these results to arbitrary ``reasonably-definable" reducibilities, under appropriate set-theoretic hypotheses. We then turn from ordinals to general structures. We show that some of the results above yield characterizations of counterexamples to Vaught's conjecture; another applies to all situations, assigning an ordinal to any reasonable class of structures and ``measure" on that class. We end by discussing some directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信