有一个深度 1 般集

Ang Li
{"title":"有一个深度 1 般集","authors":"Ang Li","doi":"arxiv-2409.00631","DOIUrl":null,"url":null,"abstract":"An infinite binary sequence is Bennett deep if, for any computable time\nbound, the difference between the time-bounded prefix-free Kolmogorov\ncomplexity and the prefix-free Kolmogorov complexity of its initial segments is\neventually unbounded. It is known that weakly 2-generic sets are shallow, i.e.\nnot deep. In this paper, we show that there is a deep 1-generic set.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"There is a deep 1-generic set\",\"authors\":\"Ang Li\",\"doi\":\"arxiv-2409.00631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An infinite binary sequence is Bennett deep if, for any computable time\\nbound, the difference between the time-bounded prefix-free Kolmogorov\\ncomplexity and the prefix-free Kolmogorov complexity of its initial segments is\\neventually unbounded. It is known that weakly 2-generic sets are shallow, i.e.\\nnot deep. In this paper, we show that there is a deep 1-generic set.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果对任何可计算的时间边界而言,无限二元序列的时间边界无前缀科尔莫哥罗夫复杂度与其初始段的无前缀科尔莫哥罗夫复杂度之间的差值最终是无边界的,那么这个序列就是贝内特深度序列。众所周知,弱 2 代集是浅集,即不深集。在本文中,我们将证明存在一个深度 1 代集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
There is a deep 1-generic set
An infinite binary sequence is Bennett deep if, for any computable time bound, the difference between the time-bounded prefix-free Kolmogorov complexity and the prefix-free Kolmogorov complexity of its initial segments is eventually unbounded. It is known that weakly 2-generic sets are shallow, i.e. not deep. In this paper, we show that there is a deep 1-generic set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信