{"title":"纯粹必然性逻辑某些扩展的算术完备性","authors":"Haruka Kogure","doi":"arxiv-2409.00938","DOIUrl":null,"url":null,"abstract":"We investigate the arithmetical completeness theorems of some extensions of\nFitting, Marek, and Truszczy\\'{n}ski's pure logic of necessitation\n$\\mathbf{N}$. For $m,n \\in \\omega$, let $\\mathbf{N}^+ \\mathbf{A}_{m,n}$, which\nwas introduced by Kurahashi and Sato, be the logic obtained from $\\mathbf{N}$\nby adding the axiom scheme $\\Box^n A \\to \\Box^m A$ and the rule $\\dfrac{\\neg\n\\Box A}{\\neg \\Box \\Box A}$. In this paper, among other things, we prove that\nfor each $m,n \\geq 1$, the logic $\\mathbf{N}^+ \\mathbf{A}_{m,n}$ becomes a\nprovability logic.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetical completeness for some extensions of the pure logic of necessitation\",\"authors\":\"Haruka Kogure\",\"doi\":\"arxiv-2409.00938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the arithmetical completeness theorems of some extensions of\\nFitting, Marek, and Truszczy\\\\'{n}ski's pure logic of necessitation\\n$\\\\mathbf{N}$. For $m,n \\\\in \\\\omega$, let $\\\\mathbf{N}^+ \\\\mathbf{A}_{m,n}$, which\\nwas introduced by Kurahashi and Sato, be the logic obtained from $\\\\mathbf{N}$\\nby adding the axiom scheme $\\\\Box^n A \\\\to \\\\Box^m A$ and the rule $\\\\dfrac{\\\\neg\\n\\\\Box A}{\\\\neg \\\\Box \\\\Box A}$. In this paper, among other things, we prove that\\nfor each $m,n \\\\geq 1$, the logic $\\\\mathbf{N}^+ \\\\mathbf{A}_{m,n}$ becomes a\\nprovability logic.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arithmetical completeness for some extensions of the pure logic of necessitation
We investigate the arithmetical completeness theorems of some extensions of
Fitting, Marek, and Truszczy\'{n}ski's pure logic of necessitation
$\mathbf{N}$. For $m,n \in \omega$, let $\mathbf{N}^+ \mathbf{A}_{m,n}$, which
was introduced by Kurahashi and Sato, be the logic obtained from $\mathbf{N}$
by adding the axiom scheme $\Box^n A \to \Box^m A$ and the rule $\dfrac{\neg
\Box A}{\neg \Box \Box A}$. In this paper, among other things, we prove that
for each $m,n \geq 1$, the logic $\mathbf{N}^+ \mathbf{A}_{m,n}$ becomes a
provability logic.